首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Judging similarities among objects, events, and experiences is one of the most basic cognitive abilities, allowing us to make predictions and generalizations. The main assumption in similarity judgment is that people selectively attend to salient features of stimuli and judge their similarities on the basis of the common and distinct features of the stimuli. However, it is unclear how people select features from stimuli and how they weigh features. Here, we present a computational method that helps address these questions. Our procedure combines image-processing techniques with a machine-learning algorithm and assesses feature weights that can account for both similarity and categorization judgment data. Our analysis suggests that a small number of local features are particularly important to explain our behavioral data.  相似文献   

2.
This paper presents an optimized cuttlefish algorithm for feature selection based on the traditional cuttlefish algorithm, which can be used for diagnosis of Parkinson’s disease at its early stage. Parkinson is a central nervous system disorder, caused due to the loss of brain cells. Parkinson's disease is incurable and could eventually lead to death but medications can help to control symptoms and elongate the patient's life to some extent. The proposed model uses the traditional cuttlefish algorithm as a search strategy to ascertain the optimal subset of features. The decision tree and k-nearest neighbor classifier as a judgment on the selected features. The Parkinson speech with multiple types of sound recordings and Parkinson Handwriting sample’s datasets are used to evaluate the proposed model. The proposed algorithm can be used in predicting the Parkinson’s disease with an accuracy of approximately 94% and help individual to have proper treatment at early stage. The experimental result reveals that the proposed bio-inspired algorithm finds an optimal subset of features, maximizing the accuracy, minimizing number of features selected and is more stable.  相似文献   

3.
    
Road Sign Detection and Recognition (RSDR) is aimed to enable drivers maintain basic functionality with the aim of identifying and notifying driver through the existing restrictions so that the process is a success on the present widened road. Examples for RSDR include ‘traffic light ahead’ or ‘pedestrian crossing’ signs. An innovative RSDR system has been introduced which comprises of pre-processing, edge detection, feature extraction, features selection and Ensemble Fuzzy Support Vector Machine (EFSVM) classifier. Feature selection is carried out successfully by deployment of Ant Colony Optimization (ACO) algorithm to determine most prominent and definitive features. These features are then fed into the ensemble SVM to enable both road side traffic detection as well as recognition. Suggested system’s performance is analyzed and evaluated with respect to road signs having a capable recognition rate.  相似文献   

4.
Achieving a clearer picture of categorial distinctions in the brain is essential for our understanding of the conceptual lexicon, but much more fine-grained investigations are required in order for this evidence to contribute to lexical research. Here we present a collection of advanced data-mining techniques that allows the category of individual concepts to be decoded from single trials of EEG data. Neural activity was recorded while participants silently named images of mammals and tools, and category could be detected in single trials with an accuracy well above chance, both when considering data from single participants, and when group-training across participants. By aggregating across all trials, single concepts could be correctly assigned to their category with an accuracy of 98%. The pattern of classifications made by the algorithm confirmed that the neural patterns identified are due to conceptual category, and not any of a series of processing-related confounds. The time intervals, frequency bands and scalp locations that proved most informative for prediction permit physiological interpretation: the widespread activation shortly after appearance of the stimulus (from 100 ms) is consistent both with accounts of multi-pass processing, and distributed representations of categories. These methods provide an alternative to fMRI for fine-grained, large-scale investigations of the conceptual lexicon.  相似文献   

5.
Classification of dog barks: a machine learning approach   总被引:1,自引:0,他引:1  
In this study we analyzed the possible context-specific and individual-specific features of dog barks using a new machine-learning algorithm. A pool containing more than 6,000 barks, which were recorded in six different communicative situations was used as the sound sample. The algorithm's task was to learn which acoustic features of the barks, which were recorded in different contexts and from different individuals, could be distinguished from another. The program conducted this task by analyzing barks emitted in previously identified contexts by identified dogs. After the best feature set had been obtained (with which the highest identification rate was achieved), the efficiency of the algorithm was tested in a classification task in which unknown barks were analyzed. The recognition rates we found were highly above chance level: the algorithm could categorize the barks according to their recorded situation with an efficiency of 43% and with an efficiency of 52% of the barking individuals. These findings suggest that dog barks have context-specific and individual-specific acoustic features. In our opinion, this machine learning method may provide an efficient tool for analyzing acoustic data in various behavioral studies.  相似文献   

6.
    
Intrusion Detection Systems (IDSs) is a system that monitors network traffic for suspicious activity and issues alert when such activity is revealed. Moreover, the existing IDSs-based methods are based on outdated attacks that unable to identify modern attacks or malicious trends. For this reason, in this study we developed a new multi-swarm adaptive grasshopper optimization algorithm to utilize adaptation mechanism in a group of swarms based on fuzzy logic to protect against sophisticated attacks. The proposed (MSAGOA) technique has the capability of global optimization and rapid convergence that are used to attain optimal feature subsets to identify attack types on IDS datasets. In the MSAGOA technique, learning engine as Extreme learning Machine, Naive Bayes, Random Forest and Decision Tree is applied as a fitness function to select the highly discriminating features and to maximize classification performance. Afterward, select the best classifier which works as a fitness function in our approach to measure the performance in terms of accuracy, detection rate, and false alarm rate. The simulations are performed on three IDS datasets such as NSL-KDD, AWID-ATK-R, and NGIDS-DS. The experimental results demonstrated that MSAGOA method has performed better and obtained high detection rate of 99.86%, accuracy of 99.89% in NSL-KDD and high detection rate of 98.73%, accuracy of 99.67% in AWID-ATK-R and detection rate of 89.50%, accuracy of 90.23% in NGIDS-DS. In addition, the performance is compared with several other existing techniques to show the efficacy of the proposed approach.  相似文献   

7.
This paper presents the Modified Grey Wolf Optimization (MGWO) algorithm which helps with the identification of the symptoms of Parkinson’s disease at a premature stage. Parkinson disease is kind of a movement malady, which if not cured timely can prove to be fatal.Thus it becomes significant to identify Parkinson’s disease at its premature phase so proper medications can provide longevity to patient by controlling the symptoms. In this work, a new model named Modified Grey Wolf Optimization (MGWO) has been proposed grounded on the traditional Grey Wolf Optimizer (GWO), which acts as a search strategy for feature selection. GWO is a meta-heuristic algorithm which is enthused by hunt down behavior of wolves. Random forest, k-nearest neighbor classifier and decision tree espy on selected features. The proposed model is evaluated using various types of datasets of voice, handwriting (spiral and meander) and speech. The put forward algorithm helps in the prediction of Parkinson disease with an estimated accuracy of 94.83%, detection rate of 98.28%, false alarm rate of 16.03% and further aid the individuals to receive a functional treatment at an early stage. The proposed bio-inspired algorithm is stable enough to find out the optimal subset of features. At last the results derived from the evaluation of proposed algorithm on datasets are compared with the results of Optimized Cuttlefish Algorithm (OCFA). The experimental results depict that the proposed algorithm helps in maximizing the accurateness and minimizing the number of features selected.  相似文献   

8.
    
Active learning is a machine learning paradigm allowing to decide which inputs to use for training. It is introduced to Genetic Programming (GP) essentially thanks to the dynamic data sampling, used to address some known issues such as the computational cost, the over-fitting problem and the imbalanced databases. The traditional dynamic sampling for GP gives to the algorithm a new sample periodically, often each generation, without considering the state of the evolution. In so doing, individuals do not have enough time to extract the hidden knowledge. An alternative approach is to use some information about the learning state to adapt the periodicity of the training data change. In this work, we propose an adaptive sampling strategy for classification tasks based on the state of solved fitness cases throughout learning. It is a flexible approach that could be applied with any dynamic sampling. We implemented some sampling algorithms extended with dynamic and adaptive controlling re-sampling frequency. We experimented them to solve the KDD intrusion detection and the Adult incomes prediction problems with GP. The experimental study demonstrates how the sampling frequency control preserves the power of dynamic sampling with possible improvements in learning time and quality. We also demonstrate that adaptive sampling can be an alternative to multi-level sampling. This work opens many new relevant extension paths.  相似文献   

9.
    
The color information of diseased leaf is the main basis for leaf based plant disease recognition. To make use of color information, a novel three-channel convolutional neural networks (TCCNN) model is constructed by combining three color components for vegetable leaf disease recognition. In the model, each channel of TCCNN is fed by one of three color components of RGB diseased leaf image, the convolutional feature in each CNN is learned and transmitted to the next convolutional layer and pooling layer in turn, then the features are fused through a fully connected fusion layer to get a deep-level disease recognition feature vector. Finally, a softmax layer makes use of the feature vector to classify the input images into the predefined classes. The proposed method can automatically learn the representative features from the complex diseased leaf images, and effectively recognize vegetable diseases. The experimental results validate that the proposed method outperforms the state-of-the-art methods of the vegetable leaf disease recognition.  相似文献   

10.
    
A computer program was developed in an attempt to differentiate the dreams of males from females. Hypothesized gender predictors were based on previous literature concerning both dream content and written language features. Dream reports from home-collected dream diaries of 100 male (144 dreams) and 100 female (144 dreams) adolescent Anglophones were matched for equal length. They were first scored with the Hall and Van de Castle (HVDC) scales and quantified using DreamSAT. Two male and two female undergraduate students were asked to read all dreams and predict the dreamer’s gender. They averaged a pairwise percent correct gender prediction of 75.8% (κ = 0.516), while the Automatic Analysis showed that the computer program’s accuracy was 74.5% (κ = 0.492), both of which were higher than chance of 50% (κ = 0.00). The prediction levels were maintained when dreams containing obvious gender identifiers were eliminated and integration of HVDC scales did not improve prediction.  相似文献   

11.
《Médecine & Droit》2023,2023(179):21-26
Medical research collects a huge number of medical data sheltered in Data Centers. An European regulation rule (GDRP) or General Data Protection Regulation aims to give an ethic frame to protect personal data and delegate responsability to citizens.  相似文献   

12.
《Médecine & Droit》2020,2020(164):129-133
Due to the progress of science and the stakes of inquiry and sentence, the DNA analysis is subject of a substantial development within the area of criminal procedure. However, the DNA is by no means a perfect evidence and it faces scientific, ethic and legal limits which result in reconsidering the balance between the stakes of punishment and the protection of Fundamental Freedoms.  相似文献   

13.
14.
    
Anxiety disorders afflict almost 7.3 percent of the world’s population. One in 14 people will experience anxiety disorder at the given year. When associated with mood disorders, anxiety can also trigger or increase other diseases’ symptoms and effects, like depression and suicidal behavior. Binaural beats are a low-frequency type of acoustic stimulation perceived when the individual is subjected to two slightly different wave frequencies, from 200 to 900 Hz. Binaural beats can contribute to anxiety reduction and modification of other psychological conditions and states, modifying cognitive processes and mood states. In this work, we applied a 5 Hz binaural beat to 6 different subjects, to detect a relevant change in their brainwaves before and after the stimuli. We applied 20 min stimuli in 10 separated sessions. We assessed the differences using a Multi-Layer Perceptron classifier in comparison with non-parametric tests and Low-Resolution Brain Electromagnetic Tomography (eLORETA). eLORETA showed remarkable changes in High Alpha. Both eLORETA and MLP approaches revealed outstanding modifications in high Beta. MLP evinced significant changes in Theta brainwaves. Our study evidenced high Alpha modulation at the limbic lobe, implicating in a possible reduction of sympathetic system activation in the studied sample. Our main results on eLORETA suggest a strong increase in the current distribution, mostly in Alpha 2, at the Anterior Cingulate, which is related to the monitoring of mistakes regarding social conduct, recognition and expression of emotions. We also found that MLPs are able of evincing the main differences with high separability in Delta and Theta.  相似文献   

15.
《Médecine & Droit》2021,2021(170):83-87
A patient suffers of a genetical disease. He does not wish to inform his family. Is he responsible for a lost of chances of his parents, chances to prevent the disease, or to receive care? Is there a second class of patients?  相似文献   

16.
GoalTo apply signal processing and machine learning skills and knowledge in processing the EEG and MEG signal and further localize and evaluate the source of the finger stimulation.MethodsCognitive control is usually applied in information processing and behavioral response. In the preprocessing, baseline correction is implemented to analyze the pre-stimuli, combining ERP to mark the event related potential, studying the time-locked only behavior. Z-score transform, coherence and spec trum are calculated and analyzed in the functional connectivity analysis.In addition to the functional analysis, Bayes Optimizer evaluates the neuro imaging according to the hierarchical Bayes. The introduction of the application is described from both user and developer’s prospects. Results: Introduction of both user and developers aspects, on its modules from pre-processing, functional analysis and results visualization and evaluation is conducted with one specific clinical data case, including the correlation is higher especially on gamma band and the MVAR coherence on the whole source space depicting the relation between different regions, especially on somatosensory (compared by thalamus) when stimulated by finger activity, phase-lock property of the E/MEG signal and etc. Compared to a manual selection, the scaling parameter prediction can be improved with support vector machine (SVM). The evaluation results with Bayes Optimization, location prediction is superior in the somatosensory area and in the thalamus, the total reconstructed source space is larger, one of the realization of cognitive system comparing different kernels and classifiers. The SVM and discriminant classifier gives similar results evaluating the dipole localization and the parameter choice related as well to the shape parameter, noise level, hyperprior and etc.ConclusionApproaches of Brain Q are found to be suitable for pre-processing for the EEG and MEG data. The system is capable of functional analysis including coherence and spectral related computation. Machine learning techniques are conducted as well to analyze and evaluate the result of the dipole reconstruction and help to predict the better model parameters and the localization of the origin dipoles. A case on finger stimulation clinical data is conducted and the results of the analysis temporarily and spatially manifests its functionality for users and potential extensions for developers.  相似文献   

17.
    
Cravings for food and other substances can impair cognition. We extended previous research by testing the effects of caffeine cravings on cued-recall and recognition memory tasks, and on the accuracy of judgements of learning (JOLs; predicted future recall) and feeling-of-knowing (FOK; predicted future recognition for items that cannot be recalled). Participants (N?=?55) studied word pairs (POND-BOOK) and completed a cued-recall test and a recognition test. Participants made JOLs prior to the cued-recall test and FOK judgements prior to the recognition test. Participants were randomly allocated to a craving or control condition; we manipulated caffeine cravings via a combination of abstinence, cue exposure, and imagery. Cravings impaired memory performance on the cued-recall and recognition tasks. Cravings also impaired resolution (the ability to distinguish items that would be remembered from those that would not) for FOK judgements but not JOLs, and reduced calibration (correspondence between predicted and actual accuracy) for JOLs but not FOK judgements. Additional analysis of the cued-recall data suggested that cravings also reduced participants’ ability to monitor the likely accuracy of answers during the cued-recall test. These findings add to prior research demonstrating that memory strength manipulations have systematically different effects on different types of metacognitive judgements.  相似文献   

18.
In this article the method of Scriptural Reasoning (SR), a text-based approach to interreligious dialogue between participants of the three Abrahamic religions, was implemented for a teacher education setting at a German university. Not only students with an outspoken religious conviction but also agnostic and atheist students, preparing themselves to become teachers in public schools, were invited into the conversation. The article documents and discusses the qualitative-empirical research in which the SR meetings were embedded. The aim of the article is not to create a hermeneutical theory for SR but rather to explore how SR as a method, with its specific learning tool of text-work, can be turned into a broader didactical model which can be transferred to other learning environments and which can in the long run provide empirical evidence on successful teacher education in multi-religious and multi-worldview societies and schools.  相似文献   

19.
    
Identifying the shape of a colour oddball is faster when the distractor colour is viewed in the preceding target-absent trial and slower when the target colour is previewed, an intertrial effect known as the distractor previewing effect (DPE). We tested the effect of feature discriminability on the DPE. In Experiment 1, we determined the interitem discriminability of two colour pairs and two shape pairs. In Experiments 2 and 3, we measured DPEs with these set of target–distractor discriminability pairs. Our results showed that when the defining features allow for efficient parallel search, the a priori degree of interitem discriminability did not modulate the DPE. The results suggest the DPE does not arise as a strictly bottom-up modulation of saliency of the search-relevant features but reflects an attentional bias aimed at preventing attention from revisiting recently rejected “search features”. The underlying mechanism of this attentional bias is discussed.  相似文献   

20.
    
This paper introduces a novel PSO-GA based hybrid training algorithm with Adam Optimization and contrasts performance with the generic Gradient Descent based Backpropagation algorithm with Adam Optimization for training Artificial Neural Networks. We aim to overcome the shortcomings of the traditional algorithm, such as slower convergence rate and frequent convergence to local minima, by employing the characteristics of evolutionary algorithms. PSO has a property of faster convergence rate, which can be exploited to account for the slower pace of convergence of the traditional BP (which is due to low values of gradients). In contrast, the integration with GA complements the drawback of convergence to local minima as GA, possesses the capability of efficient global search. So by this integration of these algorithms, we propose our new hybrid algorithm for training ANNs. We compare both the algorithms for the application of medical diagnosis. Results display that the proposed hybrid training algorithm, significantly outperforms the traditional training algorithm, by enhancing the accuracies of the ANNs with an increase of 20% in the average testing accuracy and 0.7% increase in the best testing accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号