首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In a two-dimensional drawing, when the narrow edge of a bar appears to touch the edge of a large rectangle, humans overestimate the length of the bar (Kanizsa, 1979). Kanizsa has suggested that this illusion occurs because humans perceive the bar as continuing behind the rectangle and complete the "occluded" portion of the bar. Rhesus monkeys and pigeons were trained to classify black target bars with a variety of lengths as "long" or "short." In training, the bar was always located at the same distance from a gray box. After learning this discrimination, the subjects were tested on novel stimuli, in which the bar was located at three new locations. Monkeys showed a consistent response bias for "long" when the bar touched the box, but pigeons did not. Monkeys appear to have completed the "occluded" part like humans, whereas pigeons failed to do so. Because this procedure does not require animals to complete the "occluded" part with any particular form, their failure suggests that pigeons do not even perceive the target bar as continuing behind the "occluding" figure. The failure of pigeons may be due to difficulty in perceiving depth from two-dimensional drawings.  相似文献   

2.
Experimental tasks designed to involve procedural memory are often rigid and unchanging, despite many reasons to expect that implicit learning processes can be flexible and support considerable variability. A version of the serial response time (SRT) task was developed, in which the locations of targets were probabilistically determined. Targets appeared in locations according to both a structured sequence and a cue validity parameter, and the time to respond to each target was measured. Pigeons (Columba livia) and humans (Homo sapiens) both showed response time facilitation at the highest tested value for cue validity, and the magnitude of that facilitation gradually weakened as cue validity was decreased. Both species showed evidence that response times were largely determined by the local predictabilities of individual cue locations. In addition, humans showed some evidence that explicit knowledge of the sequence affected response times, specifically when cue validity was 100%.  相似文献   

3.
A series of experiments investigated which stimulus properties pigeons use when they discriminate pairs of visual arrays that differ in numerosity. Transfer tests with novel stimuli confirmed that the birds’ choices were based on relative differences in numerosity. However, pigeons differed from other species in the non-numerical cues that affected their choices. In human and non-human primates, numerical discrimination is often influenced by continuous variables such as surface area or overall stimulus brightness. Pigeons showed little evidence of using those cues, even when summed area and brightness had been correlated with numerosity differences and reward outcome. But when array-element sizes were asymmetrically distributed across numerosities, the birds readily utilized information about item sizes as an additional discriminative cue. These novel results are discussed in relation to pigeons’ tendency to focus on local, rather than global dimensions when they process other non-numerical complex visual stimuli. The findings suggest there may be inter-specific differences in the type of perceptual information that provides the input stage for mechanisms underlying numerical processing. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
The bidirectional control procedure was used to determine whether pigeons (Columba livia) would imitate a demonstrator that pushed a sliding screen for food. One group of observers saw a trained demonstrator push a sliding screen door with its beak (imitation group), whereas 2 other groups watched the screen move independently (possibly learning how the environment works) with a conspecific either present (affordance learning with social facilitation) or absent (affordance learning alone). A 4th group could not see the screen being pushed (sound and odor control). Imitation was evidenced by the finding that pigeons that saw a demonstrator push the screen made a higher proportion of matching screen pushes than observers in 2 appropriate control conditions. Further, observers that watched a screen move without a demonstrator present made a significantly higher proportion of matching screen pushes than would be expected by chance. Thus, these pigeons were capable of affordance learning.  相似文献   

5.
Three experiment examined the role of contextual information during line orientation and line position discriminations by pigeons (Columba livia) and humans (Homo sapiens). Experiment 1 tested pigeons' performance with these stimuli in a target localization task using texture displays. Experiments 2 and 3 tested pigeons and humans, respectively, with small and large variations of these stimuli in a same-different task. Humans showed a configural superiority effect when tested with displays constructed from large elements but not when tested with the smaller, more densely packed texture displays. The pigeons, in contrast, exhibited a configural inferiority effect when required to discriminate line orientation, regardless of stimulus size. These contrasting results suggest a species difference in the perceptionand use of features and contextual information in the discrimination of line information.  相似文献   

6.
Experiment 1 showed that the Hick-Hyman law (W. E. Hick, 1952; R. Hyman, 1953) described the effects of anticipated reinforcement, a form of incentive, on pigeons' (Columba livia) reaction time to respond to a target spatial location. Reaction time was an approximately linear function of amount of information interpreted as probability of reinforcement, implying that pigeons processed incentive at a constant rate. Experiment 2 showed that the Hick-Hyman law described effects of incentive even when it varied from moment to moment in a serial reaction time task similar to that of M. J. Nissen and P. Bullemer (1987), and processing information about target spatial location modulated absolute reaction time and not rate of processing incentive. The results support mental continuity and provide comparative support for the idea of the economics of information in economic theory about the incentive value of information.  相似文献   

7.
To explore whether effects observed in human object recognition represent fundamental properties of visual perception that are general across species, the authors trained pigeons (Columba livia) and humans to discriminate between pictures of 3-dimensional objects that differed in shape. Novel pictures of the depth-rotated objects were then tested for recognition. Across conditions, the object pairs contained either 0, 1, 3, or 5 distinctive parts. Pigeons showed viewpoint dependence in all object-part conditions, and their performance declined systematically with degree of rotation from the nearest training view. Humans showed viewpoint invariance for novel rotations between the training views but viewpoint dependence for novel rotations outside the training views. For humans, but not pigeons, viewpoint dependence was weakest in the 1-part condition. The authors discuss the results in terms of structural and multiple-view models of object recognition.  相似文献   

8.
Animal Cognition - Most animals engage in complex activities that are the combination of simpler actions expressed over a period of time. The mechanisms organizing such sequential behavior have...  相似文献   

9.
In Experiment 1, 2 groups of pigeons were trained to respond to either a 4-item (A→B→C→D) or 5-item (A→B→C→D→E) list. After learning their respective list, half of the subjects were trained on a positive pair with reinforcement provided when pairs were responded to in the order true to that of the original sequence (4-item: B→C; 5-item: B→D). The remaining subjects were trained on a negative pair with reinforcement provided for responding to the pairs in the order opposite to that learned in the original sequence (4-item: C→B; 5-item: D→B). Subjects in the positive pair condition learned their respective pair faster than did subjects in the negative pair condition. In Experiment 2, after reaching criterion on a 4-item list, subjects received 16 BC probe trials spread across 4 sessions of training. Subjects performed significantly above chance on the probe trials. The performance of our subjects in Experiments 1 and 2 demonstrates that, similar to monkeys, pigeons form a representation of the lists that they learn.  相似文献   

10.
The effects of picture manipulations on humans' and pigeons' performance were examined in a go/no-go discrimination of two perceptually similar categories, cat and dog faces. Four types of manipulation were used to modify the images. Mosaicization and scrambling were used to produce degraded versions of the training stimuli, while morphing and cell exchange were used to manipulate the relative contribution of positive and negative training stimuli to test stimuli. Mosaicization mainly removes information at high spatial frequencies, whereas scrambling removes information at low spatial frequencies to a greater degree. Morphing leads to complex transformations of the stimuli that are not concentrated at any particular spatial frequency band. Cell exchange preserves high spatial frequency details, but sometimes moves them into the "wrong" stimulus. The four manipulations also introduce high-frequency noise to differing degrees. Responses to test stimuli indicated that high and low spatial frequency information were both sufficient but not necessary to maintain discrimination performance in both species, but there were also species differences in relative sensitivity to higher and lower spatial frequency information.  相似文献   

11.
In the present experiments, the 2-action method was used to determine whether pigeons could learn to imitate a conditional discrimination. Demonstrator pigeons (Columba livia) stepped on a treadle in the presence of 1 light and pecked at the treadle in the presence of another light. Demonstration did not seem to affect acquisition of the conditional discrimination (Experiment 1) but did facilitate its reversal of the conditional discrimination (Experiments 2 and 3). The results suggest that pigeons are not only able to learn a specific behavior by observing another pigeon, but they can also learn under which circumstances to perform that behavior. The results have implications for proposed mechanisms of imitation in animals.  相似文献   

12.
Absolute pitch (AP) is the ability to classify individual pitches without an external referent. The authors compared results from pigeons (Columba livia, a nonsongbird species) with results (R. Weisman, M. Njegovan, C. Sturdy, L. Phillmore, J. Coyle, & D. Mewhort, 1998) from zebra finches (Taeniopygia guttata, a songbird species) and humans (Homo sapiens) in AP tests that required classification of contiguous tones into 3 or 8 frequency ranges on the basis of correlations between the tones in each frequency range and reward. Pigeons' 3-range discriminations were similar in accuracy to those of zebra finches and humans. In the more challenging 8-range task, pigeons, like zebra finches, discriminated shifts from reward to nonreward from range to range across all 8 ranges, whereas humans discriminated only the 1st and last ranges. Taken together with previous research, the present experiments suggest that birds may have more accurate AP than mammals.  相似文献   

13.
Four homing pigeons were trained to discriminate two figures simultaneously presented on an LCD screen. The figure was either a rectangle (A) or a square (B), and four combinations of the two figures, AA, AB, BA, BB, appeared in a pseudo-randomized order. The pigeons' task was to peck one of these figures based upon whether the two figures were identical or not. One pigeon successfully learned this discrimination, with proportions of correct responses above 90% in two consecutive sessions. Of the other birds, two performed above chance level but had difficulty meeting a learning criterion of above 80% in two consecutive sessions. All birds achieved this criterion when the combinations of figures presented were reduced to two. Results suggested that learning the present same-different discrimination is within the capacity of pigeons to a certain extent, although there exists considerable individual variation in the pigeons' skills to acquire complex discrimination.  相似文献   

14.
Two monkeys (Macaca mulatta) learned a color change-detection task where two colored circles (selected from a 4-color set) were presented on a 4 × 4 invisible matrix. Following a delay, the correct response was to touch the changed colored circle. The monkeys' learning, color transfer, and delay transfer were compared to a similar experiment with pigeons. Monkeys, like pigeons (Columba livia), showed full transfer to four novel colors, and to delays as long as 6.4 s, suggesting they remembered the colors as opposed to perceptual based attentional capture process that may work at very short delays. The monkeys and pigeons were further tested to compare transfer with other dimensions. Monkeys transferred to shape and location changes, unlike the pigeons, but neither species transferred to size changes. Thus, monkeys were less restricted in their domain to detect change than pigeons, but both species learned the basic task and appear suitable for comparative studies of visual short-term memory. (PsycINFO Database Record (c) 2012 APA, all rights reserved).  相似文献   

15.
Three experiments examined the ability of birds to discriminate between the actions of walking forwards and backwards as demonstrated by video clips of a human walking a dog. Experiment 1 revealed that budgerigars (Melopsittacus undulates) could discriminate between these actions when the demonstrators moved consistently from left to right. Test trials then revealed that the discrimination transferred, without additional training, to clips of the demonstrators moving from right to left. Experiment 2 replicated the findings from Experiment 1 except that the demonstrators walked as if on a treadmill in the center of the display screen. The results from the first 2 experiments were replicated with pigeons in Experiment 3. The results cannot be explained if it is assumed that animals rely on static cues, such as those derived from individual postures, in order to discriminate between the actions of another animal. Instead, this type of discrimination appears to be controlled by dynamic cues derived from changes in the posture of the demonstrators.  相似文献   

16.
Pigeons and humans were trained to discriminate between pictures of three-dimensional objects that differed in global shape. Each pair of objects was shown at two orientations that differed by a depth rotation of 90° during training. Pictures of the objects at novel depth rotations were then tested for recognition. The novel test rotations were 30°, 45°, and 90° from the nearest trained orientation and were either interpolated between the trained orientations or extrapolated outside of the training range. For both pigeons and humans, recognition accuracy and/or speed decreased as a function of distance from the nearest trained orientation. However, humans, but not pigeons, were more accurate in recognizing novel interpolated views than novel extrapolated views. The results suggest that pigeons’ recognition was based on independent generalization from each training view, whereas humans showed view-combination processes that resulted in a benefit for novel views interpolated between the training views.  相似文献   

17.
Socially-influenced learning was studied in observer pigeons that observed a demonstrator in an adjacent chamber performing a target response comprising standing on a box and pecking a key 10 times. In Experiment 1 there was no evidence for social learning in the absence of reinforcement of the observer's behavior. When the target response was already established in the observer's repertoire, but was not differentially reinforced in relation to the demonstrator's behavior, rates of extinction were not influenced by the demonstrator's behavior (Experiment 2). Reinforcement of the observer's target response in the presence of the modeled target response, and not in its absence, resulted in control of the observer's responding by the behavior of the demonstrator (Experiments 3 and 4). This control was extended in Experiment 5 to deferred responses that occurred following a delay since the demonstrator's target responses. The acquisition of social influence depended on differential reinforcement of the observer's target response, with the demonstrator's target behavior serving as the explicit discriminative stimulus.  相似文献   

18.
In a two-dimensional drawing, when the narrow edge of a bar appears to touch the edge of a large rectangle, humans overestimate the length of the bar (Kanizsa, 1979). Kanizsa has suggested that this illusion occurs because humans perceive the bar as continuing behind the rectangle and complete the “occluded” portion of the bar. Rhesus monkeys and pigeons were trained to classify black target bars with a variety of lengths as “long” or “short.” In training, the bar was always located at the same distance from a gray box. After learning this discrimination, the subjects were tested on novel stimuli, in which the bar was located at three new locations. Monkeys showed a consistent response bias for “long” when the bar touched the box, but pigeons did not. Monkeys appear to have completed the “occluded” part like humans, whereas pigeons failed to do so. Because this procedure does not require animals to complete the “occluded” part with any particular form, their failure suggests that pigeons do not even perceive the target bar as continuing behind the “occluding” figure. The failure of pigeons may be due to difficulty in perceiving depth from two-dimensional drawings.  相似文献   

19.
The relative importance of an internal sense of direction based on inertial cues and landmark piloting for small-scale navigation by White King pigeons (Columba livia) was investigated in an arena search task. Two groups of pigeons differed in whether they had access to visual cues outside the arena. In Experiment 1, pigeons were given experience with 2 different entrances and all pigeons transferred accurate searching to novel entrances. Explicit disorientation before entering did not affect accuracy. In Experiments 2-4, landmarks and inertial cues were put in conflict or tested 1 at a time. Pigeons tended to follow the landmarks in a conflict situation but could use an internal sense of direction to search when landmarks were unavailable.  相似文献   

20.
Pinto  Carlos  Sousa  Ana 《Animal cognition》2021,24(3):593-603
Animal Cognition - In experimental tasks that involve stimuli that vary along a quantitative continuum, some choice biases are commonly found. Take, for instance, a matching-to-sample task where...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号