共查询到20条相似文献,搜索用时 15 毫秒
1.
Involvement of the hippocampal CA3-region in acquisition and in memory consolidation of spatial but not in object information in mice 总被引:3,自引:0,他引:3
This study investigates the implication of the hippocampal CA3-region in the different phases of learning and memory in spatial and non-spatial tasks. For that purpose, we performed focal injections of diethyldithiocarbamate (DDC) into the CA3-region of the dorsal hippocampus. The DDC chelates most of the heavy metals in the brain which blocks selectively and reversibly the synapses containing heavy metals, i.e., the mossy fibres synaptic buttons and synapses of the dendrites of pyramidal cells. The effects of temporal inactivation of the CA3-region was examined in a non-associative task, the spatial open-field, designed to estimate the ability of mice to react to spatial changes, and in the object recognition task, designed to estimate the ability of mice to identify a familiar object. The results show that DDC induced a specific impairment on learning and memory consolidation in the spatial open-field but had no effect on recall in this task. In the object recognition task, DDC did not induce any impairment in the different phases of learning and memory. These data demonstrate that the hippocampal CA3-region is specifically implicated in spatial information processing and seems to be involved not only in acquisition but also in consolidation of spatial information. 相似文献
2.
3.
4.
Clarke JR Rossato JI Monteiro S Bevilaqua LR Izquierdo I Cammarota M 《Neurobiology of learning and memory》2008,90(2):374-381
Evidence indicates that brain endocannabinoids are involved in memory processing. However, the participation of CB1 and CB2 cannabinoid receptors in recognition memory has not been yet conclusively determined. Therefore, we evaluated the effect of the posttraining activation of hippocampal cannabinoid receptors on the consolidation of object recognition memory. Rats with infusion cannulae stereotaxically aimed to the CA1 region of the dorsal hippocampus were trained in an object recognition learning task involving exposure to two different stimulus objects. Memory retention was assessed at different times after training. In the test sessions, one of the objects presented during training was replaced by a novel one. When infused in the CA1 region immediately after training, the non-selective cannabinoid receptor agonist WIN-55,212-2 and the endocannabinoid membrane transporter inhibitor VDM-11 blocked long-term memory retention in a dose-dependent manner without affecting short-term memory, exploratory behavior, anxiety state or the functionality of the hippocampus. The amnesic effect of WIN-55,212-2 and VDM-11 was not due to state-dependency and was completely reversed by co-infusion of the CB1 receptor antagonist AM-251 and mimicked by the CB1 receptor agonist ACEA but not by the CB2 receptor agonists JWH-015 and palmitoylethanolamide. Our data indicate that activation of hippocampal CB1 receptors early after training hampers consolidation of object recognition memory. 相似文献
5.
Intrahippocampal administration of A beta(1-40) impairs spatial learning and memory in hyperglycemic mice 总被引:1,自引:0,他引:1
Huang HJ Liang KC Chen CP Chen CM Hsieh-Li HM 《Neurobiology of learning and memory》2007,87(4):483-494
Age-related neurodegenerative dementia, particularly Alzheimer's disease (AD), may be exacerbated by several interacting risk factors including genetic predisposition, beta amyloid (A beta) protein accumulation, environmental toxins, head trauma, and abnormal glycolytic metabolism. We examined the spatial learning and memory effects of A beta(1-40) administration on hyperglycemic mice by their performance in the Morris water maze. Chronic hyperglycemia was induced in male C57BL/6J mice to mimic diabetes mellitus by intraperitoneal injection of streptozotocin (STZ), which specifically destroys pancreatic beta-islet cells. Ten days after STZ treatment, intrahippocampal infusion of vehicle, monomer, or oligomer A beta(1-40) was given to these hyperglycemic mice. Our results demonstrate that in comparison with vehicle or monomer A beta(1-40), oligomer A beta(1-40) induced significant deficits of spatial learning and memory in hyperglycemic mice. Apoptotic signals were identified in the CA1 and dentate gyrus of hippocampus in hyperglycemic mice. A beta accumulation, oxidative stress, and apoptosis in the CA1 region were more intensive in hyperglycemic mice than that in normoglycemic mice after acute treatment with oligomer A beta(1-40) peptide treatment. These results indicate that CA1 apoptosis was enhanced by oxidative stress resulting from accumulation of A beta. Considered together, these findings suggest that hyperglycemic mice are more vulnerable to the A beta-induced-oxidative stress than normal subjects. We therefore propose that A beta accumulation would be enhanced by hyperglycemia, and the oxidative stress caused by A beta accumulation would in turn enhance the AD symptoms. 相似文献
6.
Disruption of delayed memory for a sequence of spatial locations following CA1- or CA3-lesions of the dorsal hippocampus 总被引:2,自引:0,他引:2
Axon-sparing neurotoxic lesions of CA1 or CA3 were produced in the dorsal hippocampus to test dissociative lesion effects on spatial working memory for sequential items. Rats were required to remember four different sections sequentially presented on a newly devised maze (i.e., Tulum maze) during a study phase. Each section was cued by a unique object that was specifically associated with each location within the section during the study phase. Following a 15-s delay and during the test phase, rats were required to revisit the location within a section randomly chosen among the previously visited sections in the absence of the cued object. Both CA1 and CA3 lesions similarly disrupted accurate relocation of a previously visited place. However, differential effects of the CA1 and CA3 lesions were observed in serial position curves. CA3-lesions disrupted performance for the first three serial positions, but did not disrupt performance for the last serial position (recency). In contrast, CA1-lesions disrupted performance for all serial positions. The results suggest that temporal separation of spatial memory may depend on the conjoint function of CA1 and CA3 of the hippocampus with a disruption of a spatial pattern completion process following CA3 lesions and a disruption of a temporal pattern separation process following a CA1 lesion. 相似文献
7.
Glucocorticoid administration into the dorsal striatum [corrected] facilitates memory consolidation of inhibitory avoidance training but not of the context or footshock components
下载免费PDF全文

Medina AC Charles JR Espinoza-González V Sánchez-Resendis O Prado-Alcalá RA Roozendaal B Quirarte GL 《Learning & memory (Cold Spring Harbor, N.Y.)》2007,14(10):673-677
It is well established that glucocorticoid administration into a variety of brain regions facilitates memory consolidation of fear-conditioning tasks, including inhibitory avoidance. The present findings indicate that the natural glucocorticoid corticosterone administered into the dorsal striatum (i.e., caudate nucleus) of male Wistar rats produced dose- and time-dependent enhancement of inhibitory avoidance memory consolidation. However, as assessed with a modified inhibitory avoidance procedure that took place on two sequential days to separate context training from footshock training, corticosterone administration into the dorsal striatum did not enhance memory of either the contextual or aversively motivational aspects of the task. 相似文献
8.
Transient activation of the CA3 Kappa opioid system in the dorsal hippocampus modulates complex memory processing in mice 总被引:1,自引:0,他引:1
Daumas S Betourne A Halley H Wolfer DP Lipp HP Lassalle JM Francés B 《Neurobiology of learning and memory》2007,88(1):94-103
The hippocampus plays a central role in various forms of complex learning and memory. Opioid peptides and receptors are abundant in the hippocampus. These peptides are co-released with glutamate from mossy fiber- and lateral perforant path-synapses. In this study, we evaluated the functional relevance of the CA3 Kappa opioid receptors (KOR) by transient pharmacological activation or inactivation using single bilateral intrahippocampal microinjections of a selective agonist (U50,488H, 1 or 2.5 nmol), a selective antagonist (nor-binaltorphimine, norBNI 5 nmol) or a mixture of both. C57Bl/6J mice were tested in a fear conditioning paradigm (FC) or in a modified version of the water maze task thought to reveal how flexibly animals can learn and manipulate spatial information (WM). In FC, the agonist (2.5 nmol) decreased context-induced (but not tone-induced) freezing whereas norBNI had no effect. The impairment caused by the agonist U50,488H was blocked by the injection of norBNI, suggesting that overstimulation of CA3-KOR impairs the acquisition and consolidation of contextual fear-related memory. In the WM task, mice were trained repeatedly each day to find a hidden platform. After having reached this goal, the platform position was changed the next day for a new task. U50,488H injection before the last task abolished the previously acquired ability to find rapidly a new platform location, whereas adding norBNI reversed this impairment. Thus, in the mouse, even partial and topographically restricted activation of CA3-KOR entails impairments in two different hippocampus-dependent tasks, indicating functional relevance of the kappa opioid system. 相似文献
9.
The medial and lateral perforant path projections to the hippocampal CA3 region display distinct mechanisms of long-term potentiation (LTP) induction, N-methyl-d-aspartate (NMDA) and opioid receptor dependent, respectively. However, medial and lateral perforant path projections to the CA3 region display associative LTP with coactivation, suggesting that while they differ in receptors involved in LTP induction they may share common downstream mechanisms of LTP induction. Here we address this interaction of LTP induction mechanisms by evaluating the contribution of opioid receptors to the induction of associative LTP among the medial and lateral perforant path projections to the CA3 region in vivo. Local application of the opioid receptor antagonists naloxone or Cys2-Tyr3-Orn5-Pen7-amide (CTOP) normally block induction of lateral perforant path-CA3 LTP. However, these opioid receptor antagonists failed to block associative LTP in lateral perforant path-CA3 synapses when it was induced by strong coactivation of the medial perforant pathway which displays NMDAR-dependent LTP. Thus strong activation of non-opioidergic afferents can substitute for the opioid receptor activation required for lateral perforant path LTP induction. Conversely, medial perforant path-CA3 associative LTP was blocked by opioid receptor antagonists when induced by strong coactivation of the opioidergic lateral perforant path. These data indicate endogenous opioid peptides contribute to associative LTP at coactive synapses when induced by strong coactivation of an opioidergic afferent system. These data further suggest that associative LTP induction is regulated by the receptor mechanisms of the strongly stimulated pathway. Thus, while medial and lateral perforant path synapses differ in their mechanisms of LTP induction, associative LTP at these synapses share common downstream mechanisms of induction. 相似文献
10.
Recent studies in patients with hippocampal lesions have indicated that the degree of memory impairment is proportional to the extent of damage within the hippocampus. Particularly, patients with damage restricted to the CA1 field demonstrate moderate to severe anterograde amnesia with only slight retrograde amnesia. Comparable results are also seen in other species such as non-human primates and rats; however, the effect of selective damage to CA1 has not yet been characterized in mice. In the present study, we investigated the effects of excitotoxic (NMDA) lesions of dorsal CA1 on several aspects of learning and memory performance in mice. Our data indicate that dorsal CA1 lesioned mice are hyperactive upon exposure to a novel environment, have spatial working memory impairments in the Y-maze spontaneous alternation task, and display deficits in an 8-arm spatial discrimination learning task. Lesioned mice are able to acquire an operant lever-press task but demonstrate extinction learning deficits in this appetitive operant paradigm. Taken together, our results indicate that lesions to dorsal CA1 in mice induce selective learning and memory performance deficits similar to those observed in other species, and extend previous findings indicating that this region of the hippocampus is critically involved in the processing of spatial information and/or the processing of inhibitory responses. 相似文献
11.
Neuronal synchronisation at gamma frequencies (30-100 Hz) has been implicated in cognition and memory. Gamma oscillations can be studied in various in vitro models, but their in vivo validity and their relationship with reference memory remains to be proven. By using the natural variation of wild type C57bl/6J mice, we assessed the relationships between reference memory and gamma oscillations recorded in hippocampal area CA3 in vivo and in vitro. Local field potentials (LFPs) were recorded from area CA3 in behaviourally-characterised freely moving mice, after which hippocampal slices were prepared for recordings in vitro of spontaneous gamma oscillations and kainate-induced gamma oscillations in CA3. The gamma-band power of spontaneous oscillations in vitro correlated with that of CA3 LFP oscillations during inactive behavioural states. The gamma-band power of kainate-induced oscillations correlated with the activity-dependent increase in CA3 LFP gamma-band power in vivo. Kainate-induced gamma-band power correlated with Barnes circular platform performance and object location recognition, but not with object novelty recognition. Kainate-induced gamma-band power was larger in mice that recognised the aversive context, but did not correlate with passive avoidance delay. The correlations between behavioural and electrophysiological measures obtained from the same animals show that the gamma-generating capacity of the CA3 network in vitro is a useful index of in vivo gamma strength and supports an important role of CA3 gamma oscillations in spatial reference memory. 相似文献
12.
Disconnection analysis of CA3 and DG in mediating encoding but not retrieval in a spatial maze learning task
下载免费PDF全文

The dentate gyrus (DG) subregion of the hippocampus has been shown to be involved in encoding but not retrieval in a spatial maze task (modified Hebb-Williams maze). The first experiment in this study examined whether a lesion to the CA3 would contribute to a similar encoding deficit. A DG group was included in order to replicate previous results. Relative to controls, animals receiving CA3 lesions were impaired in encoding, not retrieval, on the modified Hebb-Williams maze--similar to a group that received DG lesions. This suggests the possibility that CA3 and DG are working together to mediate encoding processes. The second experiment in this study was designed to test the interaction between CA3 and DG using a disconnection paradigm. Animals with contralateral lesions (CA3 lesioned in one hemisphere, DG lesioned in the other hemisphere) showed a significant disruption effect on encoding, but not retrieval, when compared with animals with ipsilateral lesions (CA3 and DG lesioned in the same hemisphere, leaving the other hemisphere intact). This suggests an interaction between CA3 and DG in supporting encoding but not retrieval processes in a spatial maze learning task. 相似文献
13.
Wistar rats, treated with the GABA(A) receptor agonist muscimol, were used to investigate the role of the hippocampal-prelimbic cortical (Hip-PLC) circuit in spatial learning in the Morris water maze task, and in passive avoidance learning in the step-through task. In the water maze task, animals were trained for three consecutive days and tested 24 h after the end of training. In the step-through task, the animals were trained once and tested 24h after training. On the training days, daily infusion of muscimol (0.5 microg/0.25 microl) was given (1) bilaterally to the ventral hippocampus (vHip), (2) bilaterally to the prelimbic cortex (PLC), (3) to the unilateral vHip and the ipsilateral PLC, or (4) for disconnecting the Hip-PLC circuit, to both the unilateral vHip and the contralateral PLC 30 min before training. The results showed that inhibition of the vHip resulted in disruption of performance in both tasks. Inhibition of the PLC produced impaired water maze performance, but had no effect on the step-through task. Disconnection of the Hip-PLC circuit produced similar effects to PLC inhibition. However, simultaneous inhibition of the unilateral vHip and the ipsilateral PLC had little effect on performance of the water maze task. The results suggested that spatial learning depends on the Hip-PLC circuit, whereas passive avoidance learning is independent of this circuit. 相似文献
14.
Remodeling of hippocampal mossy fibers is selectively induced seven days after the acquisition of a spatial but not a cued reference memory task
下载免费PDF全文

Rekart JL Sandoval CJ Bermudez-Rattoni F Routtenberg A 《Learning & memory (Cold Spring Harbor, N.Y.)》2007,14(6):416-421
Relating storage of specific information to a particular neuromorphological change is difficult because behavioral performance factors are not readily disambiguated from underlying cognitive processes. This issue is addressed here by demonstrating robust reorganization of the hippocampal mossy fiber terminal field (MFTF) when adult rats learn the location of a hidden platform but not when rats learn to locate a visible platform. Because the latter task requires essentially the same behavioral performance as the former, the observed MFTF growth is seen as the consequence of specific input-dependent hippocampal activity patterns selectively generated by processing of extramaze but not intramaze cues. Successful performance on the hidden platform task requires formation of spatial memory. Increased MFTFs in hidden platform-trained rats are observed 7 d but not 2 d after training nor in swim controls. These results suggest that structural plasticity of the mossy fiber:CA3 circuit may contribute to the maintenance of long-lasting memory but not to the initial storage of the spatial context. 相似文献
15.
The protein synthesis-dependent form of hippocampal long-term potentiation (late-LTP) is thought to underlie memory. Its induction requires a distinct stimulation strength, and the common opinion is that only repeated tetani result in late-LTP whereas as single tetanus only reveals a transient early-LTP. Properties of LTP induction were compared to learning processes where repetition is often the prerequisite for a long-lasting memory. However, also single events can lead to manifested memory. If LTP subserves processes of learning, similar results should be detectable for LTP. Here we show that a single tetanus is sufficient to induce late-LTP requiring dopaminergic co-transmission during induction. 相似文献
16.
Microinfusions of flumazenil into the basolateral but not the central nucleus of the amygdala enhance memory consolidation in rats. 总被引:3,自引:0,他引:3
C Da Cunha B Roozendaal A Vazdarjanova J L McGaugh 《Neurobiology of learning and memory》1999,72(1):1-7
Extensive evidence indicates that benzodiazepine receptors in the amygdala are involved in regulating memory consolidation. Recent findings indicate that many other drugs and hormones influence memory through selective activation of the basolateral amygdala nucleus (BLA). This experiment examined whether the memory-modulatory effect of flumazenil, a benzodiazepine receptor antagonist, selectively involves the BLA. Bilateral microinfusions of flumazenil (12 nmol in 0.2 microl) into the BLA of rats administered immediately after training in an inhibitory avoidance task significantly enhanced 48-h retention performance whereas infusions into the central nucleus were ineffective. These findings indicate that the BLA is selectively involved in mediating flumazenil's influence on memory storage and are thus consistent with extensive evidence indicating that the BLA is involved in regulating memory consolidation. 相似文献
17.
G. Dominguez N. Henkous C. Pierard C. Belzung N. Mons Daniel Beracochea 《Cognitive, affective & behavioral neuroscience》2018,18(4):665-679
The study was designed to assess whether repeated administration of diazepam (Valium®, Roche)—a benzodiazepine exerting an agonist action on GABAA receptors—may alleviate both the short (1 week, 1W) and long-term (6 weeks, 6W) deleterious effects of alcohol withdrawal occurring after chronic alcohol consumption (6 months; 12% v/v) in C57/BL6 male mice. More pointedly, we first evidenced that 1W and 6W alcohol-withdrawn mice exhibited working memory deficits in a sequential alternation task, associated with sustained exaggerated corticosterone rise and decreased pCREB levels in the prefrontal cortex (PFC). In a subsequent experiment, diazepam was administered i.p. for 9 consecutive days (1 injection/day) during the alcohol withdrawal period at decreasing doses ranging from 1.0 mg/kg to 0.25 mg/kg. Diazepam was not detected in the blood of withdrawn mice at the time of memory testing, occurring 24 hours after the last diazepam injection. Repeated diazepam administration significantly improved alternation rates and normalized levels of glucocorticoids and pCREB activity in the PFC in 1W but not in 6W withdrawn mice. Thus, repeated diazepam administration during the alcohol-withdrawal period only transitorily canceled out the working memory impairments and glucocorticoid alterations in the PFC of alcohol-withdrawn animals. 相似文献
18.
Cognitive processes mediated by the hippocampus and cortex are influenced by estradiol (E2); however, the mechanisms by which E2 has these effects are not entirely clear. As such, studies were conducted to begin to address the role of actions at the β form of the intracellular estrogen receptor (ERβ) for E2’s cognitive effects in adult female mice. We investigated whether E2 improved performance of wild type (WT) and ERβ knockout (βERKO) mice in tasks considered to be mediated by the cortex and hippocampus, the object recognition and object placement tasks. WT and βERKO mice were ovariectomized (ovx) and E2 (0.1 mg/kg), an ERβ selective ER modulator (SERM), diarylpropionitrile (DPN; 0.1 mg/kg), or oil vehicle was administered to mice following training in these tasks. We hypothesized that if E2 has mnemonic effects, in part, due to its actions at ERβ, then WT mice administered E2 or DPN would have improved performance compared to vehicle WT controls, which would not be different from βERKO mice administered vehicle, E2 or DPN. Alternatively, activation of ERα (with E2, which is a ligand for both ERα and ERβ) may produce opposing effects on cognition and/or the activation of ERα and ERβ vs. either receptor isoform alone may produce a different pattern of effects. Results obtained supported the hypothesis that ERβ activation is important for mnemonic effects. Ovx WT, but not βERKO, mice administered E2 or DPN had a greater percentage of time exploring a novel object in the object recognition task and a displaced object in the object placement task. Thus, actions at ERβ may be important for E2 or SERMs to enhance cognitive performance of female mice in the object recognition and placement tasks. 相似文献
19.
The effects of intrabrainstem injections of the neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) into the B3 raphe region (nucleus raphe magnus and nucleus reticularis paragigantocellularis) on early ingestive behavior and nociception were assessed in Sprague-Dawley rat pups during the first postnatal week. Lesions resulted in a marked depletion of serotonin (5HT) in hindbrain without influencing 5HT levels in forebrain. Pretreatment with desipramine (DMI) resulted in a sparing of noradrenergic neurons from neurotoxic effects. The B3 lesion resulted in significant hyperalgesia as reflected by decreased latencies in tail flick testing. Although nipple attachment latencies in suckling tests were slightly increased by the lesion, no notable effects on mouthing or other ingestive-related behaviors were observed in testing conducted in an independent ingestion paradigm. These results suggest that whereas B3 serotonergic neurons may be functioning in an adult-typical manner to regulate analgesia during the early postnatal period, this raphe region may play only a slight role in the modulation of ingestion-related behaviors early in life. 相似文献
20.
Grimes MT Harley CW Darby-King A McLean JH 《Learning & memory (Cold Spring Harbor, N.Y.)》2012,19(3):107-115