首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Concurrent learning of temporal and spatial sequences   总被引:7,自引:0,他引:7  
In a serial reaction time task, stimulus events simultaneously defined spatial and temporal sequences. Responses were based on the spatial dimension. The temporal sequence was incidental to the task, defined by the response-to-stimulus intervals in Experiment 1 and stimulus onset asynchronies in Experiment 2. The two sequences were either of equal length and correlated or of unequal length. In both experiments, spatial learning occurred regardless of sequence length condition. In contrast, temporal learning occurred only in the correlated condition. These results suggest that timing is an integrated part of action representations and that incidental learning for a temporal pattern does not occur independently from the action. Interestingly, sequence learning was enhanced in the correlated condition, reflecting the integration of spatial-temporal information.  相似文献   

2.
How does learning the timing of actions influence our ability to learn the order of actions? A sequence of responses cued by spatial stimuli was learned in a serial reaction time task where the response-to-stimulus intervals (RSIs) were random, constant, or followed a fixed sequence. In this final sequenced-RSI condition, the response and RSI sequences were consistently matched in phase and could be integrated into a common sequence representation. The main result was that the response sequence was learned to a similar degree in all RSI training conditions, indicating that neither the predictability of RSIs nor the integration of the phase-matched response and timing sequences benefited learning of the response sequence. Nevertheless, temporal learning and integration speeded up performance without strengthening the representation of response order.  相似文献   

3.
In biological cognition, specialized representations and associated control processes solve the temporal problems inherent in skilled action. Recent data and neural circuit models highlight three distinct levels of temporal structure: sequence preparation, velocity scaling, and state-sensitive timing. Short sequences of actions are prepared collectively in prefrontal cortex, then queued for performance by a cyclic competitive process that operates on a parallel analog representation. Successful acts like ball-catching depend on coordinated scaling of effector velocities, and velocity scaling, mediated by the basal ganglia, may be coupled to perceived time-to-contact. Making acts accurate at high speeds requires state-sensitive and precisely timed activations of muscle forces in patterns that accelerate and decelerate the effectors. The cerebellum may provide a maximally efficient representational basis for learning to generate such timed activation patterns.  相似文献   

4.
In incidental sequence learning situations, there is often a number of participants who can report the task-inherent sequential regularity after training. Two kinds of mechanisms for the generation of this explicit knowledge have been proposed in the literature. First, a sequence representation may become explicit when its strength reaches a certain level (Cleeremans, 2006), and secondly, explicit knowledge may emerge as the result of a search process that is triggered by unexpected events that occur during task processing and require an explanation (the unexpected-event hypothesis; Haider & Frensch, 2009). Our study aimed at systematically exploring the contribution of both mechanisms to the generation of explicit sequence knowledge in an incidental learning situation. We varied the amount of specific sequence training and inserted unexpected events into a 6-choice serial reaction time task. Results support the unexpected-event view, as the generation of explicit sequence knowledge could not be predicted by the representation strength acquired through implicit sequence learning. Rather sequence detection turned out to be more likely when participants were shifted to the fixed repeating sequence after training than when practicing one and the same fixed sequence without interruption. The behavioral effects of representation strength appear to be related to the effectiveness of unexpected changes in performance as triggers of a controlled search.  相似文献   

5.
Procedural learning benefits from memory processes occurring outside practice resulting in offline learning. Offline gains have been demonstrated almost exclusively for the ordinal structure of sequential motor tasks. Many skills also demand that the correct serial order of events be appropriately timed. Evidence indicates that the temporal aspect of a procedural skill can be encoded independent of serial order knowledge and governed by at least two distinct neural circuits. The present experiment determined if (a) offline gains emerge for temporal learning, and (b) if such gains occur for timing supervised by distinct timing systems. Participants experienced 216 practice trials of a 7-key press sequence that involved integer- or non-integer timing rhythms. Twenty-four hours after training 30 test trials were administered. Results revealed robust offline enhancement for timing performance of the non-integer based temporal sequences. This improvement was localized to stabilization of the required relative but not absolute time profiles. The neural circuitry central to supporting the performance of non-integer timing sequences is also a principal constituent of what is described as the "cognitive" timing system. Timing governed by this system appears most susceptible to offline gains via consolidation.  相似文献   

6.
This study investigated the development of contextual dependencies for sequential perceptual-motor learning on static features in the learning environment. In three experiments we assessed the effect of manipulating task irrelevant static context features in a serial reaction-time task. Experiment 1 demonstrated impaired performance after simultaneously changing display color, placeholder shape, and placeholder location. Experiment 2 showed that this effect was mainly caused by changing placeholder shape. Finally, Experiment 3 indicated that changing context affected both the application of sequence knowledge and the selection of individual responses. It is proposed either that incidental stimulus features are integrated with a global sequence representation, or that the changed context causes participants to strategically inhibit sequence skills.  相似文献   

7.
Recent evidence suggests that a common temporal representation underlies memory for serial order of items in a sequence, and the timing of items in a sequence. This stands in contrast to other data suggesting a reliance on only ordinal information in short-term memory tasks. An experiment is reported here in which participants were post cued to perform a comparison between a probe and study list of items irregularly spaced in time, on the basis of order or temporal information.Participants' performance on theserial recognition task was notaffected by the temporal proximity of items, although participants were able to use temporal information to perform a temporal recognition task. Application of a temporal matching model of serial and temporal recognition suggests that although participants were able to remember the timing of items, this memory for timing was unlikely to determine serial recognition performance. The results suggest a dissociation between ordinal and temporal information in short-term memory.  相似文献   

8.
Intentional motor action is typically characterized by the decision about the timing, and the selection of the action variant, known as the “what” component. We compared free action selection with instructed action, where the movement type was externally cued, in order to investigate the action selection and action representation in a Libet’s task. Temporal and spatial locus of these processes was examined using the combination of high-density electroencephalography, topographic analysis of variance, and source reconstruction. Instructed action, engaging representation of the response movement, was associated with distinct negativity at the parietal and centro-parietal channels starting around 750 ms before the movement, which has a source particularly in the bilateral inferior parietal lobule. This suggests that in delayed-action tasks, the process of action representation in the inferior parietal lobule may play an important part in the larger parieto-frontal activity responsible for movement selection.  相似文献   

9.
It is well established that random practice compared to blocked practice enhances motor learning. Additionally, while information in the environment may be incidental, learning is also enhanced when an individual performs a task within the same environmental context in which the task was originally practiced. This study aimed to disentangle the effects of practice schedule and incidental/environmental context on motor learning. Participants practiced three finger sequences under either a random or blocked practice schedule. Each sequence was associated with specific incidental context (i.e., color and location on the computer screen) during practice. The participants were tested under the conditions when the sequence-context associations remained the same or were changed from that of practice. When the sequence-context association was changed, the participants who practiced under blocked schedule demonstrated greater performance decrement than those who practiced under random schedule. The findings suggested that those participants who practiced under random schedule were more resistant to the change of environmental context.  相似文献   

10.
In four experiments we investigated whether incidental task sequence learning occurs when no instructional task cues are available (i.e. with univalent stimuli). We manipulated task sequence by presenting three simple binary-choice tasks (colour, form or letter case decisions) in regular repeated or random order. Participants were required to use the same two response keys for each of the tasks. We manipulated response sequence by ordering the stimuli so as to produce either a regular or a random order of left versus right-hand key presses. When sequencing in both, or either, separate stream (i.e. task sequence and/or response sequence) was changed to random, only those participants who had processed both sequences together showed evidence of sequence learning in terms of significant response time disruption (Experiments 1-3). This effect disappeared when the sequences were uncorrelated (Experiment 4). The results indicate that only the correlated integration of task sequence and response sequence produced a reliable incidental learning effect. As this effect depends on the predictable ordering of stimulus categories, it suggests that task sequence learning is perceptual rather than conceptual in nature.  相似文献   

11.
This study sought evidence of observational motor learning, a type of learning in which observation of the skilled performance of another person not only facilitates motor skill acquisition but does so by contributing to the formation of effector-specific motor representations. Previous research has indicated that observation of skilled performance engages cognitive processes similar to those occurring during action execution or physical practice, but has not demonstrated that these include processes involved in effector-specific representation. In two experiments, observer subjects watched the experimenter performing a serial reaction time (SRT) task with a six-item unique sequence before sequence knowledge was assessed by response time and/or free generation measures. The results suggest that: (1) subjects can acquire sequence information by watching another person performing the task (Experiments 1-2); (2) observation results in as much sequence learning as task practice when learning is measured by reaction times (RTs) and more than task practice when sequence learning is measured by free generation performance (Experiment 2, Part 1); and (3) sequence knowledge acquired by model observation can be encoded motorically--that is, in an effector-specific fashion (Experiment 2, Part 2).  相似文献   

12.
Implicit task sequence learning may be attributed to learning the order of perceptual stimulus features associated with the task sequence, learning a series of automatic task set activations, or learning an integrated sequence that derives from 2 correlated streams of information. In the present study, our purpose was to distinguish among these 3 possibilities. In 4 separate experiments, we replicated and extended a previous study by Heuer, Schmidtke, and Kleinsorge (2001). The presence or absence of a sequence of tasks, as well as that of a sequence of different task-to-response mappings, was manipulated independently within experiments. Evidence of implicit sequence learning was found only when correlated sequences of tasks and mappings were present. No sequence learning effects were found when only a single task sequence or a single mapping sequence was present, even when the structure of the single sequence was identical to the structure of the integrated sequence of task-mapping combinations. These results suggest that implicit task sequence learning is not dependent on either perceptual learning of stimulus features or automatic task-set activation per se. Rather, it appears to be driven by correlated streams of information.  相似文献   

13.
Currently, a popular model for the central representation of motor skills is embodied in Schmidt's schema theory of discrete motor skill learning (Schmidt, 1975). Two experiments are reported here that contrast predictions from a schema abstraction model that is the basis for schema theory with those from an exemplar-based model of motor skill memory representation. In both experiments, subjects performed 300 trials per day of three variations of a three-segment timing task over 4 days of acquisition. The subjects then either immediately transferred to four novel variations of the same task (Experiment 1) that varied in degree of similarity to the exemplars experienced during acquisition; or performed two novel and two previously produced exemplars, following 24-h and 1-week retention intervals (Experiment 2). The results indicated that novel task transfer was not affected by the degree of similarity between the acquisition and transfer exemplars, and that there was no advantage for a previously produced exemplar over a novel exemplar after either a 24-hr or 1 week retention interval. Also, in both experiments, a consistent pattern of bias in responding was noted for novel task transfer and retention. These results are indicative of a schema abstraction model of memory representation for motor skills.  相似文献   

14.
Contextual dependencies in motor skills   总被引:1,自引:0,他引:1  
The development of contextual dependencies during motor skill acquisition was examined. Environmental context was varied along intentional and incidental dimensions. Intentional stimuli were defined as essential for achieving skilled performance, whereas incidental stimuli were defined as those that have the potential to become associated with specific tasks due to their selective presence in the learning environment. Experiment 1 demonstrated the occurrence of contextual dependencies for the learning of four-key typing sequences. Contextual dependencies were diminished in Experiment 2 when the number of keys used in the sequences was reduced. In Experiment 3, a retention condition was incorporated, in which both the intentional and the incidental stimuli were not available; this confirmed that task difficulty mediated the development of contextual dependencies. These findings are discussed with respect to the incorporation of environmental contextual stimuli with memorial representations of movement information.  相似文献   

15.
The memory system that supports implicit perceptual-motor sequence learning relies on brain regions that operate separately from the explicit, medial temporal lobe memory system. The implicit learning system therefore likely has distinct operating characteristics and information processing constraints. To attempt to identify the limits of the implicit sequence learning mechanism, participants performed the serial interception sequence learning (SISL) task with covertly embedded repeating sequences that were much longer than most previous studies: ranging from 30 to 60 (Experiment 1) and 60 to 90 (Experiment 2) items in length. Robust sequence-specific learning was observed for sequences up to 80 items in length, extending the known capacity of implicit sequence learning. In Experiment 3, 12-item repeating sequences were embedded among increasing amounts of irrelevant nonrepeating sequences (from 20 to 80% of training trials). Despite high levels of irrelevant trials, learning occurred across conditions. A comparison of learning rates across all three experiments found a surprising degree of constancy in the rate of learning regardless of sequence length or embedded noise. Sequence learning appears to be constant with the logarithm of the number of sequence repetitions practiced during training. The consistency in learning rate across experiments and conditions implies that the mechanisms supporting implicit sequence learning are not capacity-constrained by very long sequences nor adversely affected by high rates of irrelevant sequences during training.  相似文献   

16.
Numbers and spatially directed actions share cognitive representations. This assertion is derived from studies that have demonstrated that the processing of small- and large-magnitude numbers facilitates motor behaviors that are directed to the left and right, respectively. However, little is known about the role of sensorimotor learning for such number–action associations. In this study, we show that sensorimotor learning in a serial reaction-time task can modify the associations between number magnitudes and spatially directed movements. Experiments 1 and 3 revealed that this effect is present only for the learned sequence and does not transfer to a novel unpracticed sequence. Experiments 2 and 4 showed that the modification of stimulus–action associations by sensorimotor learning does not occur for other sets of ordered stimuli such as letters of the alphabet. These results strongly suggest that numbers and actions share a common magnitude representation that differs from the common order representation shared by letters and spatially directed actions. Only the magnitude representation, but not the order representation, can be modified episodically by sensorimotor learning.  相似文献   

17.
This study investigated whether a target sequence that people intend to learn is learned selectively when it is interleaved with another (non-target) sequence. Three experiments used a serial reaction time task in which different spatial and color stimuli occurred alternately. Each of the two interleaved sequences had structural regularity. Participants in an intentional learning group were instructed to learn the target (spatial) sequence whereas those in an incidental learning group were not. In Experiments 1 and 2 spatial and color sequences were correlated. Results showed that the intentional group learned the spatial sequence better than the incidental group and learned it independently of the color sequence, whereas the incidental group learned the two sequences as a combined sequence. In Experiment 3 the sequences were uncorrelated. Results showed that the intentional group was no longer superior in learning the spatial sequence. Findings indicate that the intention to learn a target sequence enables selective learning of it only when it is correlated with a non-target sequence.  相似文献   

18.
Even though it can be shown that verbal knowledge of results (KR) is redundant with sensory feedback for learning certain motor skills, such findings do not eliminate the possibility that when KR is available it influences underlying learning processes. In order to examine the function of KR more closely, two experiments were designed in which the subjects received conflicting information about their own sensory feedback and the KR presented by the experimenter. In Experiment 1, two erroneous-KR groups, a correct-KR group, and a no-KR group performed 150 practice trials on a simple anticipation timing task and then performed three no-KR retention tests of 30 trials each following intervals of 10 minutes, 1 week, and 1 month. The results supported previous findings that providing correct KR is redundant in anticipation tasks. However, learning was influenced by KR as subjects performed according to the erroneous KR information, thereby ignoring their sensory feedback even after a 1-month interval. In Experiment 2, subjects practised a more complex striking response for the anticipation task for 75 trials and then performed no-KR retention trials either immediately, or 1 day or 1 week later. One of the groups received erroneous KR after 50 practice trials with correct KR. The results confirmed and extended those from Experiment 1, as erroneous KR, even after initial practice with correct KR, influenced retention performance. These results indicate that although KR provides information that is not needed to learn anticipation timing skills, this augmented verbal information is a dominant source of information that influences underlying cognitive processes involved in learning motor skills.  相似文献   

19.
Intentions are central to guiding actions to their completion because they generate expectations which precede the realization of a task. This ability to manage time was investigated by using a cognitive task which involves several highly integrated processes: sequential learning, explicit processing, and working memory. In this task, participants are required to explicitly learn a repeating color sequence before receiving an instruction to give an anticipatory motor response concerning the next element. Two types of sequences (temporal and spatial) and three experimental conditions were tested in both a group of normal participants and a group of schizophrenic patients. Schizophrenics were included because their condition is known to alter conscious executive function. Our results showed that schizophrenic patients have a strong deficit in performing anticipation tasks. Although they learned the sequences almost normally, their anticipatory ability was reduced in comparison to normal participants in all the tested conditions. These results expand the notion of a working memory deficit in schizophrenia and bear strong implications for understanding executive disorders observed in such patients.  相似文献   

20.
In the Serial Reaction Time (SRT) task, participants respond to a set of stimuli the order of which is apparently random, but which consists of repeating sub‐sequences. Participants can become sensitive to this regularity, as measured by an indirect test of reaction time, but can remain apparently unaware of the sequence, as measured by direct tests of prediction or recognition. Some researchers have claimed that this learning may take place by observation alone. We suggest that observational learning may be due to explicit acquired knowledge of the sequence, and is not mediated by the same processes which give rise to learning by action. In Expt 1, we show that it is very difficult to acquire explicit sequence knowledge under dual task conditions, even when participants are told that a regular sequence exists. In Expt 2, we use the same conditions to compare actors, who respond to the sequence during learning, and observers, who merely watch the stimuli. Furthermore, we manipulate the salience of the sequence, in order to encourage learning. There is no evidence of observational learning in these conditions, despite the usual effects of learning being demonstrated by actors. In Expt 3, we show that observational learning does occur, but only when observers have no secondary task and even then only reliably for a sequence which has been made salient by chunking subcomponents. We conclude that sequence learning by observation is mediated by explicit processes, and is eliminated under conditions which support learning by action, but make it difficult to acquire explicit knowledge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号