首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present research examined two variables regarding the acquisition of a new bimanual coordination pattern: the role of previous experience and the nature of augmented feedback. Two groups of participants acquired a new coordination pattern (135 degrees relative phase) following two sessions of practice of another novel pattern (90 degrees relative phase). Transfer of learning in these groups was compared to two groups that had not previously learned a new pattern, but were nevertheless influenced by coordination patterns that are intrinsic to the task of bimanual relative timing (in-phase, 0 degrees, and anti-phase, 180 degrees). The findings revealed that new learning overshadowed the influence of the intrinsic patterns. Learning was also greatly affected by augmented feedback: dynamic, on-line pursuit tracking information was more effective in transfer than static, terminal feedback. Implications of these findings regarding theoretical constructs in motor learning are discussed.  相似文献   

2.
Results from recent experiments (e.g., Kovacs, Buchanan, & Shea, 2009a–b, 2010a,b) suggest that when salient visual information is presented using Lissajous plots bimanual coordination patterns typically thought to be very difficult to perform without extensive practice can be performed with remarkably low relative phase error and variability with 5 min or less of practice. However, when this feedback is removed, performance deteriorates. The purpose of the present experiment was to determine if reducing the frequency of feedback presentation will decrease the participant's reliance on the feedback and will facilitate the development of an internal representation capable of sustaining performance when the Lissajous feedback is withdrawn. The results demonstrated that reduced frequency Lissajous feedback results in very effective bimanual coordination performance on tests with Lissajous feedback available and when feedback is withdrawn. Taken together the present experiments add to the growing literature that supports the notion that salient perceptual information can override some aspects of the system's intrinsic dynamics typically linked to motor output control. Additionally, the present results suggest that the learning of both externally and internally driven bimanual coordination is facilitated by providing reduced frequency Lissajous feedback.  相似文献   

3.
Four groups learnt a novel bimanual coordination movement pattern under instructions designed to manipulate focus of attention. It was predicted that instructions directing attention onto the effects of the action would facilitate learning. Three groups received demonstrations of the required 90° relative phase movement. Two of the demonstration groups also received instruction directing attention either towards the feedback (EXTERNAL), or the relationship between their arm movements and the feedback (RELATION). The third group received no attention directing instructions (DEMO). A final group was only provided with goal relevant feedback (NO DEMO). A scanning task enabled coordination bias to be assessed pre-practice. This was conducted to ensure task novelty and assign participants equally across groups based on strength of bias to in- and/or anti-phase. Acquisition rate was slower for the DEMO only group, especially compared to the EXTERNAL group. Additionally, participants biased to in-phase (as compared to anti-phase) during the scanning trial also showed high error early in practice. These differences remained in retention. Irrespective of feedback condition the DEMO group evidenced the most error in retention. However, all groups were affected by the removal of on-line feedback, although the attention-directing instructions provided during practice somewhat decreased the negative effects associated with feedback removal. Overall, the in-phase-biased participants were most affected by withdrawal of feedback. It was concluded that movement demonstrations alone do not facilitate learning of a novel coordination task, unless additional goal-directed instruction is provided. Additionally, individual differences in coordination bias pre-practice can be used to predict learning rate and quality.  相似文献   

4.
This study investigated the relation between postural movement and upper-limb coordination stability. Adults produced bimanual circles using in-phase and anti-phase coordination patterns in time to an increasing rate metronome (i.e., movement-time instruction) in the horizontal (e.g., tabletop) and vertical (e.g., "wall" perpendicular to body) planes. All participants produced the instructed in- and anti-phase patterns. Coordination stability (i.e., SD of relative phase) was larger for anti-phase than in-phase patterns in both planes; however, anti-phase coordination stability was lower in the vertical plane than in the horizontal plane. Torso movement was larger during anti-phase coordination patterns in the horizontal plane, whereas it was larger during in-phase coordination patterns in the vertical plane. These results indicate that different orientations of the same task can produce different results for stability of coordination. This information may be important for performing and learning complex motor-coordination movements (e.g., playing musical instruments).  相似文献   

5.
In an experiment, we examined the effect of intermittency (from 25.6 Hz to 0.2 Hz) of visual information on continuous isometric force production as a function of force level (5%, 10%, 25%, and 50% of maximal voluntary contraction [MVC]). The amount of force variability decreased and the irregularity of force output increased as a function of increased visual intermittency rate. Vision was found to have an influence on the frequency structure of force output up to 12 Hz, and the 25% MVC force level had more high-frequency modulations with higher rates of visual information. The effective use of intermittent visual information is mediated nonlinearly by force level, and there are multiple time scales of visual control (range, approximately 0 - 12 Hz) that are postulated to be a function of both feedback and feedforward control processes.  相似文献   

6.
The aim of this study was to test the effect of fatigue of the knee extensors muscles on bilateral force control accuracy, variability, and coordination in the presence and absence of visual feedback. Twenty-two young physically active subjects (18 males, 4 females) were divided into two groups and performed 210 submaximal sustained bilateral isometric contractions of knee extensors muscles with and without visual feedback. One group performed a symmetrical task—both legs were set at identical positions (60° knee flexion)—while the other group performed an asymmetrical task (60° and 30° knee flexion). We used the framework of the uncontrolled manifold hypothesis to quantify two variance components: one of them did not change total force (VUCM), while the other did (VORT). Performance of bilateral isometric contractions reduced voluntary and electrically induced force without changes in bilateral force control variability and accuracy. Bilateral force production stability and accuracy were higher in both tasks with visual feedback. Synergistic (anti-phase) structure of force control between the lower limbs occurred and the values of synergy index were higher only during the performance of the asymmetrical task with visual feedback. In addition, greater bilateral force control accuracy was observed during the performance of the asymmetrical task (with and without visual feedback), despite no differences in within-trial variability of both tasks.  相似文献   

7.
The purpose of this study was to investigate the effects of aging and the role of augmented visual information in the acquisition of a new bimanual coordination pattern, namely a 90° relative phase pattern. In a pilot study, younger and older adults received augmented visual feedback in the form of a real-time orthogonal display of both limb movements after every fifth trial. Younger adults acquired this task over three days of practice and retained the task well over periods of one week and one month of no practice while the older adults showed no improvement at all on the task. It was hypothesized that the amount of augmented information was not sufficient for the older adults to overcome the strong tendency to perform natural, intrinsically stable coordination patterns, which consequently prevented them from learning the task. The present study evaluated the age-related role of augmented visual feedback for learning the new pattern. Participants were randomly assigned within age groups to receive either concurrent or terminal visual feedback after every trial in acquisition. In contrast to the pilot study, all of the older adults learned the pattern, although not to the same level as the younger adults. Both younger and older adults benefitted from concurrent visual feedback, but the older adults gained more from the concurrent feedback than the younger adults, relative to terminal feedback conditions. The results suggest that when learning bimanual coordination patterns, older adults are more sensitive to the structure of the practice conditions, particularly the availability of concurrent visual information. This greater sensitivity to the learning environment may reflect a diminished capacity for inhibitory control and a decreased ability to focus attention on the salient aspects of learning the task.  相似文献   

8.
An experiment was conducted to examine the stability of the anti-phase and in-phase modes of coordination by means of both fluctuations and relaxation times. Participants (n=6) performed a rhythmic bimanual forearm coordination task that required them to oscillate their forearms in-phase and anti-phase while grasping two manipulanda at fixed frequencies ranging from 0.6 to 1.8 Hz. Relaxation times were measured as the time taken to return to a stable mode following the application of a transient mechanical torque. It was found that relaxation times were not different statistically across participants, frequencies, and coordinative modes. However, fluctuations, as indicated by the mean S.D. of relative phase across individual frequency plateaus, were significantly greater in the anti-phase than in the in-phase mode of coordination, p<0.05. Whilst providing new empirical support for the notion that relaxation times should be of the same order of magnitude at frequencies outside transition regions, the findings suggest that the level of stochastic noise in the anti-phase mode is greater than that of the in-phase mode. Implications are made for the future assessment of local pattern stability.  相似文献   

9.
Bimanual in-phase and anti-phase patterns were performed in the transverse plane under optimal and degraded proprioceptive conditions, i.e., without and with tendon vibration. Moreover, proprioceptive information was changed midway into each trial to examine on-line reorganization. In addition to the proprioceptive perturbation, the availability of visual information was manipulated to study to which degree sensory information from different modalities interact. Movement patterns performed under identical sensory conditions were compared, i.e., the first 15 s (control) and the 15 s following a change in afferent input (transfer). In the control and transfer conditions, movements with vibrations were less accurate than those without vibrations indicating the influence of optimal proprioceptive information in the calibration and recalibration of intrinsic bimanual movement patterns. Furthermore, pattern stability was affected by the nature of the transfer condition. This indicated that the degree of fluctuations in a sensory transfer situation depended upon the quality of the proprioceptive information experienced in the initial conditions. The influence of visual information was not without importance, although the nature of the coordination mode must be taken into account. In the control conditions, in-phase movements were less stable when vision was absent, whereas anti-phase movements were more stable when vision was not present. This observation was made independent of the available proprioceptive information revealing differences in visual guidance between both coordination modes. In the transfer conditions, pattern stability was similar during the vision and no-vision conditions suggesting a limited influence of visual information in the recalibration process.  相似文献   

10.
Perceptual guidance of movement with simple visual or temporal information can facilitate performance of difficult coordination patterns. Guidance may override coordination constraints that usually limit stability of bimanual coordination to only in-phase and anti-phase. Movement dynamics, however, might not have the same characteristics with and without perceptual guidance. Do visual and auditory guidance produce qualitatively different dynamical organization of movement? An anti-phase wrist flexion and extension coordination task was performed under no specific perceptual guidance, under temporal guidance with a metronome, and under visual guidance with a Lissajous plot. For the time series of amplitudes, periods and relative phases, temporal correlations were measured with Detrended Fluctuation Analysis and complexity levels were measured with multiscale entropy. Temporal correlations of amplitudes and relative phases deviated from the typical 1/f variation towards more random variation under visual guidance. The same was observed for the series of periods under temporal guidance. Complexity levels for all time series were lower in visual guidance, but higher for periods under temporal guidance. Perceptual simplification of the task’s goal may produce enhancement of performance, but it is accompanied by changes in the details of movement organization that may be relevant to explain dependence and poor retention after practice under guidance.  相似文献   

11.
ABSTRACT The authors examined whether force level interacts with the presence or absence of vision in bimanual force control. Participants produced periodic isometric forces such that the sum of the 2 finger forces was the target force under 4 force levels cycling between lower levels (5-40%) of maximum voluntary contraction with an interval of 1000?ms. Without vision, the correlation between the 2 finger forces was strongly positive over all force levels. However, with vision the correlation changed from negative to positive with force level. The result with vision indicated that the strategy of the bimanual force control changed from force error compensation to force coupling and the available redundancy thus decreased with an increase in force.  相似文献   

12.
Constraints underlying bimanual coordination have traditionally been explained by dynamic interactions between the effectors. However, the present experiments demonstrate that a fundamental constraint on bimanual performance is the manner in which task goals are represented. In Experiment 1, participants vocalized during in-phase and anti-phase bimanual movements. As expected, most participants spontaneously exhibited temporal coupling between the manual and vocal responses. However, the form of coupling differed for the in-phase and anti-phase conditions. For anti-phase movements, there was a strong bias to produce two vocalizations per cycle; for in-phase movements, participants were equally likely to produce one or two vocalizations per cycle. We hypothesized that the spontaneous vocalizations probed the cognitive representation of the task, and the results indicated that anti-phase movements did entail a more complex event structure than in-phase movements did. In Experiment 2, we manipulated the event structure by having participants vocalize either once or twice per hand cycle. As predicted, coordination stability was reduced when the event structure was more complex.  相似文献   

13.
This experiment investigated the effects of spatial (gain) and temporal (frequency) properties of visual feedback on the control of isometric force output. Participants performed an index finger isometric force production task with five different levels of visual gain and four feedback frequencies. There was a significant effect of gain on mean and standard deviation (SD) of the force output, whereas feedback frequency significantly affected the force SD and root-mean square error. Significant effects of gain and frequency and a gain X frequency interaction on the approximate entropy (ApEn) of the force revealed the effect of visual feedback uncertainty on the force fluctuation dynamics. The combined effects of the spatial and temporal properties of visual feedback on ApEn were approximated by a sum of quadratic functions, indicating their compensatory effect on the informational content of the dynamics of isometric force.  相似文献   

14.
The purpose of this study was to identify changes in segment/joint coordination and coordination variability in running with increasing head stability requirements. Fifteen strides from twelve recreational runners while running on a treadmill at their preferred speed were collected. Head stability demands were manipulated through real-time visual feedback that required head-gaze orientation to be contained within boxes of different sizes, ranging from 21 to 3 degrees of visual angle in 3-degree decrements. Coordination patterns and coordination variability were assessed between head and trunk segments, hip and knee joints, and knee and ankle joints in the three cardinal planes, respectively. Mean coupling angles and the standard deviation of the coupling angles at each individual point of the stance phase were calculated using a modified vector coding technique and circular statistics. As head stability demands increased, transverse plane head-trunk coordination was more anti-phase and showed increased head‑leading and decreased trunk‑leading patterns; for the lower extremity, there was increased in-phase and decreased anti-phase sagittal plane coordination. Increased head stability demands also resulted in an increase in coordination variability for both upper body and lower extremity couplings during the second half of the stance phase. Overall, the results provide evidence that coordinative adaptations to increasing head stability demands occur throughout the entire body: 1) through more independent control of the head relative to the trunk; 2) by increasing in-phase coordination between lower extremity joints, and 3) through increased coordination variability in the second half of stance in both upper body segmental and lower extremity joint couplings. These adaptations likely contribute to the reduction of the range of motion of the trunk in vertical direction.  相似文献   

15.
The current study investigated factors that affect the stability of anti-phase bimanual finger tapping. Past research employing the order parameter and control parameter concepts, has identified frequency of movement as a control parameter that affects the stability of finger movement patterns (the order parameter). The present study investigated the hypothesis that multiple movement related variables can interact to influence the stability of an order parameter. Specifically, the combined effect of the rate of movement and movement force on the stability of bimanual finger tapping was examined. Participants were required to initiate an anti-phase tapping pattern under three different movement rate conditions (600, 400, and 200 ms), and were required to increase the force of one finger at the onset of a randomly presented stimulus. The results indicate that an increase in the force parameter at lower tapping rates (600 ms) did not affect the phase relation of the fingers, however at higher rates (200 and 400 ms), the introduction of a force parameter resulted in fluctuations of the phase relation of the fingers, which were followed by pattern shifts from anti-phase to in-phase tapping. The results indicate that movement force and rate of movement interact to influence the outcome of the tapping pattern. Further research is required to investigate force as a control parameter.  相似文献   

16.
The present study examined whether the beneficial role of coherently grouped visual motion structures for performing complex (interlimb) coordination patterns can be generalized to synchronization behavior in a visuo-proprioceptive conflict situation. To achieve this goal, 17 participants had to synchronize a self-moved circle, representing the arm movement, with a visual target signal corresponding to five temporally shifted visual feedback conditions (0%, 25%, 50%, 75%, and 100% of the target cycle duration) in three synchronization modes (in-phase, anti-phase, and intermediate). The results showed that the perception of a newly generated perceptual Gestalt between the visual feedback of the arm and the target signal facilitated the synchronization performance in the preferred in-phase synchronization mode in contrast to the less stable anti-phase and intermediate mode. Our findings suggest that the complexity of the synchronization mode defines to what extent the visual and/or proprioceptive information source affects the synchronization performance in the present unimanual synchronization task.  相似文献   

17.
The performance of bimanual movements involving separate objects presents an obvious challenge to the visuo-motor system: Visual feedback can only be obtained from one target at a time. To overcome this challenge overt shifts in visual attention may occur so that visual feedback from both movements may be used directly (Bingham, Hughes, & Mon-Williams, 2008; Riek, Tresilian, Mon-Williams, Coppard, & Carson, 2003). Alternatively, visual feedback from both movements may be obtained in the absence of eye movements, presumably by covert shifts in attention (Diedrichsen, Nambisan, Kennerley, & Ivry, 2004). Given that the quality of information falls with increasing distance from the fixated point, can we obtain the level of information required to accurately guide each hand for precision grasping of separate objects without moving our eyes to fixate each target separately? The purpose of the current study was to examine how the temporal coordination between the upper limbs is affected by the quality of visual information available during the performance of a bimanual task. A total of 11 participants performed congruent and incongruent movements towards near and/or far objects. Movements were performed in natural, fixate-centre, fixate-left, and fixate-right vision conditions. Analyses revealed that the transport phase of incongruent movements was similar across vision conditions for the temporal aspects of both the transport and grasp, whereas the spatial aspects of grasp formation were influenced by the quality of visual feedback. We suggest that bimanual coordination of the temporal aspects of reach-to-grasp movements are not influenced solely by overt shifts in visual attention but instead are influenced by a combination of factors in a task-constrained way.  相似文献   

18.
The present study examined the principles underlying inter and intralimb coordination constraints during performance of bimanual elbow–wrist movements at different cycling frequencies (from 0.75 Hz to 2.50 Hz). Participants performed eight coordination tasks that consisted of a combination of in-phase (IN) and/or anti-phase (AN) coordination modes between both elbows and wrists (interlimb), with isodirectional (Iso) or non-isodirectional (NonI) coordination modes within each limb (intralimb). As expected, the principle of muscle homology (in-phase coordination), giving rise to mirror symmetrical movements with respect to the mid-sagittal plane, had a powerful influence on the quality of global coordinative behavior both between and within limbs. When this principle was violated (i.e., when the anti-phase mode was introduced in one or both joint pairs), the non-isodirectional intralimb mode exhibited a (de)stabilizing role in coordination, which became more pronounced at higher cycling frequencies. However, pattern loss with increasing cycling frequency resulted not only in convergence toward the more stable in-phase patterns with the elbows and wrists but also to the anti-phase patterns (which were associated with directional compatibility of within-limb motions). Moreover, participants generally preserved their initial mode of coordination (either in-phase or anti-phase) in the proximal joints (i.e., elbows) while shifting from anti-phase to in-phase (or vice versa) with their distal joint pair (i.e., wrists). Taken together, these findings reflect the impact of two immanent types of symmetry in bimanual coordination: mirror-image and translational symmetry.  相似文献   

19.
Increases in the oscillation frequency of bimanual movements produce a switch from an anti-phase (180° relative phase) to an in-phase (0° relative phase) coordination pattern. This finding is observed when subjects are instructed not to intervene when they feel themselves slipping out of the anti-phase pattern. The question addressed in this study concerned how performance would be affected if subjects were instructed to try to maintain the pattern at all times. This issue was addressed using two separate groups of subjects: one group was given the do not intervene instructions, the other group was told to try to stay with the pattern at all times. Forearm rotations were tested in 15 s trials, paced by an auditory metronome set at 1.0, 1.5, 2.0, 2.5, and 3.0 Hz. Frequency distributions of the point estimates of relative phase were analyzed. The Do not Intervene group replicated previous findings, as indicated by the development of a bimodal histogram of relative phase distributions with increases in oscillation frequency. However, a very different pattern of findings emerged with increases in oscillation frequency for the group told to stay with the anti-phase pattern. Rather than a bimodal distribution being developed, the data maintained 180° as its central tendency — no secondary distribution developed around 0° relative phase. These data suggest that volitional control can over-ride the inherent dynamical tendencies of the motor system.  相似文献   

20.
Young (n = 7) and elderly (n = 7) subjects performed bimanual coordination patterns in the transverse plane according to the in-phase or antiphase mode. Sensory information was manipulated through visual (with or without vision of the limbs) and proprioceptive input (with or without vibratory stimuli on one limb). Movement patterns with vibrations showed higher deviations from the intended relative phase than did those without vibrations. This finding suggests that the proprioceptive information induced by the vibrations and the movement interfered, leading to a disruption of the coordination patterns. In addition, as compared with the elderly, the young subjects performed more stable movements under normal circumstances but were more strongly affected by vibratory stimuli during the performance of in-phase movements. During antiphase movements, both age groups experienced a decrease of pattern stability. Furthermore, the absence or presence of visual feedback influenced the performance of the young subjects more than that of the elderly. The presence of vision led to stable in-phase movements, whereas a decrease of pattern stability was observed for antiphase movements. In general, these results demonstrate that manipulation of feedback sources affects young subjects more than elderly ones, and this can be related to a reduced sensory sensitivity as a function of aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号