首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Investigation of interlimb synergy has become synonymous with the study of coordination dynamics and is largely confined to periodic movement. Based on a computational approach this paper demonstrates a method of investigating the formation of a novel synergy in the context of stochastic, spatially asymmetric movements. Nine right-handed participants performed a two degrees of freedom (2D) "etch-a-sketch" tracking task where the right hand controlled the horizontal position of the response cursor on the display while the left hand controlled the vertical position. In a pre-practice 2D tracking task, measures of phase lag between the irregularly moving target and the response showed that participants controlled left and right hands independently, performance of the right hand being slightly superior to the left. Participants then undertook 4 h 16 min distributed practice of a one degree of freedom etch-a-sketch task where the target was constrained to move irregularly in only the 45 degrees direction on the display. To track such a target accurately participants had to make in-phase coupled stochastic movements of the hands. In a post-practice 2D task, measures of phase lag showed anisotropic improvement in performance, the amount of improvement depending on the direction of motion on the display. Improvement was greatest in the practised 45 degrees and least in the orthogonal 135 degrees direction. Best and worst performances were no longer in the directions associated with right and left hands independently, but in directions requiring coupled movements of the two hands. These data support the proposal that the nervous system can establish a model of novel coupling between the hands and thereby form a task-dependent bimanual synergy for controlling the stochastic coupled movements as an entity.  相似文献   

2.
Well-coordinated bimanual force control is common in daily life. We investigated the effects of anodal transcranial direct current stimulation (tDCS) over the primary motor cortex on bimanual force control. Under a cross-over study, young adults (n = 19; female = 6, male = 13) completed three bimanual force control tasks at 5%, 25%, and 50% of bimanual maximum voluntary force (BMVF) before and after real or sham tDCS. Real tDCS enhanced accuracy at all BMVF, reduced variability at 5% BMVF, and increased coordination at 5% BMVF. Real tDCS improved force control at 5% and 25% BMVF, and especially increased bimanual coordination at 5% BMVF. These findings might have implications for establishing interventions for patients with hand force control deficits.  相似文献   

3.
Much recent research using discrete unimanual tasks has indicated that individuals with Down syndrome (DS) have more difficulty performing verbal-motor tasks as compared to visual-motor tasks (see Perceptual-Motor Behavior in Down Syndrome, Human Kinetics, Champaign, IL, 2000, p. 305 for a review). In continuous tasks, however, individuals with DS perform better when movement is guided by auditory information compared to visual information (Downs Syndr.: Res. Prac. 4 (1996) 25; J. Sport Exercise Psy. 22 (2000) S90). The aim of the present study was to investigate if there are any differences for adults with DS between visual, auditory and verbal guidance in a continuous bimanual task. Ten adults with DS, 10 adults without DS and 10 typically developing children drew lines bimanually towards the body (down) and away from the body (up) following three different guidance conditions: visual (flashing line), auditory (high tone, low tone), and verbal (“up”, “down”). All participants produced mostly in-phase movements and were close to the 1000 ms target time for all guidance conditions. The adults with DS, however, displayed greater variability in their movement time, movement amplitude and bimanual coordination than adults without DS. For all groups, the left hand was slower and more variable in producing the lateral movements than the right hand. The results regarding guidance information suggest that auditory information is beneficial for repetitive bimanual tasks for adults with DS. Possible mechanisms that cause these results will be discussed.  相似文献   

4.
    
Children with unilateral Cerebral Palsy (uCP) experience problems performing tasks requiring the coordinated use of both hands (bimanual coordination; BC). Additionally, some children with uCP display involuntary symmetrical activation of the opposing hand (mirrored movements). Measures, used to investigate therapy-related improvements focus on the functionality of the affected hand during unimanual or bimanual tasks. None however specifically address spatiotemporal integration of both hands. We explored the kinematics of hand movements during a bimanual task to identify parameters of BC. Thirty-seven children (aged 10.9 ± 2.6 years, 20 male) diagnosed with uCP participated. 3D kinematic motion analysis was performed during the task requiring opening of a box with their affected- (AH) or less-affected hand (LAH), and pressing a button inside with the opposite hand. Temporal and spatial components of data were extracted and related to measures of hand function and level of impairment. Total task duration was correlated with the Jebsen–Taylor Test of Hand Function in both conditions (either hand leading with the lid-opening). Spatial accuracy of the LAH when the box was opened with their AH was correlated with outcomes on the Children’s Hand Use Experience Questionnaire. Additionally, we found a subgroup of children displaying non-symmetrical movement interference associated with greater movement overlap when their affected hand opened the box. This subgroup also demonstrated decreased use of the affected hand during bimanual tasks. Further investigation of bimanual interference, which goes beyond small scaled symmetrical mirrored movements, is needed to consider its impact on bimanual task performance following early unilateral brain injury.  相似文献   

5.
Perceptual guidance of movement with simple visual or temporal information can facilitate performance of difficult coordination patterns. Guidance may override coordination constraints that usually limit stability of bimanual coordination to only in-phase and anti-phase. Movement dynamics, however, might not have the same characteristics with and without perceptual guidance. Do visual and auditory guidance produce qualitatively different dynamical organization of movement? An anti-phase wrist flexion and extension coordination task was performed under no specific perceptual guidance, under temporal guidance with a metronome, and under visual guidance with a Lissajous plot. For the time series of amplitudes, periods and relative phases, temporal correlations were measured with Detrended Fluctuation Analysis and complexity levels were measured with multiscale entropy. Temporal correlations of amplitudes and relative phases deviated from the typical 1/f variation towards more random variation under visual guidance. The same was observed for the series of periods under temporal guidance. Complexity levels for all time series were lower in visual guidance, but higher for periods under temporal guidance. Perceptual simplification of the task’s goal may produce enhancement of performance, but it is accompanied by changes in the details of movement organization that may be relevant to explain dependence and poor retention after practice under guidance.  相似文献   

6.
    
The experiment was conducted to determine the influence of mirror movements in bimanual coordination during life span. Children, young adults, and older adults were instructed to perform a continuous 1:2 bimanual coordination task by performing flexion–extension wrist movements over 30 s where symmetrical and non-symmetrical coordination patterns alternate throughout the trial. The vision of the wrists was covered and Lissajous-feedback was provided online. All age groups had to perform 10 trials under three different load conditions (0 kg, .5 kg, 1.0 kg: order counterbalanced). Load was manipulated to determine if increased load increases the likelihood of mirror movements. The data indicated that the performance of the young adults was superior compared to the children and older adults. Children and older adults showed a stronger tendency to develop mirror movements and had particular difficulty in performing the non-symmetrical mode. This type of influence may be attributed to neural crosstalk.  相似文献   

7.
Previous theoretical and empirical work indicates that intentional changes in a bimanual coordination pattern depends on the stability of the bimanual coordination pattern (Kelso, Schotz, & Schöner, 1988; Scholz & Kelso, 1990). The present experiments retest this notion when online Lissajous displays are provided. Switching to and from in-phase and antiphase and to and from 90° and 270° were tested in Experiment 1. Participants were able to very effectively produce the 180°, 90°, and 270° coordination patterns although performance of the in-phase coordination task was even more stable. The data indicated that switching to in-phase from antiphase was more rapid than vice versa and that switching times between 90° to 270° were similar. Experiment 2 investigated switching between 1:2 and 2:1 bimanual coordination patterns. The results indicated that switching time was similar between the 2:1 and 1:2 coordination tasks and that increases in stability over practice resulted in additional decreases in switching times. This provides additional evidence that the attractor landscape is fundamentally different dependent on the type of information provided the performer. What remains to be done is to reconcile these results with the various theories/perspectives currently used to describe and explain bimanual coordination.  相似文献   

8.
The issue of handedness has been the topic of great interest for researchers in a number of scientific domains. It is typically observed that the dominant hand yields numerous behavioral advantages over the non-dominant hand during unimanual tasks, which provides evidence of hemispheric specialization. In contrast to advantages for the dominant hand during motor execution, recent research has demonstrated that the right hand has advantages during motor planning (regardless of handedness), indicating that motor planning is a specialized function of the left hemisphere. In the present study we explored hemispheric advantages in motor planning and execution in left- and right-handed individuals during a bimanual grasping and placing task. Replicating previous findings, both motor planning and execution was influenced by object end-orientation congruency. In addition, although motor planning (i.e., end-state comfort) was not influenced by hand or handedness, motor execution differed between left and right hand, with shorter object transport times observed for the left hand, regardless of handedness. These results demonstrate that the hemispheric advantages often observed in unimanual tasks do not extend to discrete bimanual tasks. We propose that the differences in object transport time between the two hands arise from overt shifting visual fixation between the two hands/objects.  相似文献   

9.
    
An experiment was designed to determine the impact of the force requirements on the production of bimanual 1:2 coordination patterns requiring the same (symmetric) or different (asymmetric) forces when Lissajous displays and goal templates are provided. The Lissajous displays have been shown to minimize the influence of attentional and perceptual constraints allowing constraints related to neural crosstalk to be more clearly observed. Participants (N = 20) were randomly assigned to a force condition in which the left or right limb was required to produce more force than the contralateral limb. In each condition participants were required to rhythmically coordinate the pattern of isometric forces in a 1:2 coordination pattern. Participant performed 13 practice trials and 1 test trial per force level. The results indicated that participants were able to effectively coordinate the 1:2 multi-frequency goal patterns under both symmetric and asymmetric force requirements. However, consistent distortions in the force and force velocity time series were observed for one limb that appeared to be associated with the production of force in the contralateral limb. Distortions in the force produced by the left limb occurred regardless of the force requirements of the task (symmetric, asymmetric) or whether the left or right limb had to produce more force than the contralateral limb. However, distinct distortions in the right limb occurred only when the left limb was required to produce 5 times more force than the right limb. These results are consistent with the notion that neural crosstalk can influence both limbs, but may manifest differently for each limb depending on the force requirements of the task.  相似文献   

10.
    
Complexity matching is a measure of coordination based on information exchange between complex networks. To date, studies have focused mainly on interpersonal coordination, but complexity matching may generalize to interacting networks within individuals. The present study examined complexity matching in a double, coordinated Fitts' perceptual-motor task with comparable individual and dyadic conditions. Participants alternated touching targets with their left and right hands in the individual condition, or analogously with the left hand of one partner and the right hand of another in the dyadic condition. In Experiment 1, response coupling was manipulated by making targets drift either randomly or contingently based on prior responses. Here, drift refers to the variability in the target movements between response locations. Long-range correlations in time series of inter-response intervals exhibited complexity matching between the left and right hands of dyads and individuals. Response coupling was necessary for complexity matching in dyads but not individuals. When response coupling was absent in the dyadic condition, the degree of complexity matching was significantly reduced. Experiment 2 showed that the effect of coupling was due to interactions between left and right responses. Results also showed a weak, negative relationship between complexity matching and performance as measured by total response time. In conclusion, principles and measures of complexity matching apply similarly within and between individuals, and perceptual-motor performance can be facilitated by loose response coupling.  相似文献   

11.
The constraints that guide bimanual movement coordination are informative about the processing principles underlying movement planning in humans. For example, symmetry relative to the body midline benefits finger and hand movements independent of hand posture. This symmetry constraint has been interpreted to indicate that movement coordination is guided by a perceptual code. Although it has been assumed implicitly that the perceptual system at the heart of this constraint is vision, this relationship has not been tested. Here, congenitally blind and sighted participants made symmetrical and non-symmetrical (that is, parallel) bimanual tapping and finger oscillation movements. For both groups, symmetrical movements were executed more correctly than parallel movements, independent of anatomical constraints like finger homology and hand posture. For the blind, the reliance on external spatial factors in movement coordination stands in stark contrast to their use of an anatomical reference frame in perceptual processing. Thus, the externally coded symmetry constraint evident in bimanual coordination can develop in the absence of the visual system, suggesting that the visual system is not critical for the establishment of an external-spatial reference frame in movement coordination.  相似文献   

12.
This paper examines the informational activity devoted by the CNS to couple oscillating limbs in order to sustain and stabilize bimanual coordination patterns. Through a double-task paradigm associating a bimanual coordination task and a reaction time (RT) task, we investigated the relation between the stability of preferred bimanual coordination patterns and the central cost expended by the CNS for their stabilization. Ten participants performed in-phase and anti-phase coordination patterns in a dual task condition (coordination + RT) at several frequencies (0.5, 0.75, 1.0, 1.5, and 2.0 Hz), thereby decreasing the stability of the bimanual patterns. Results showed a U-shaped evolution of pattern stability and attentional cost, as a function of oscillation frequency, exhibiting a minimum value at the same frequency. These findings indicate that central cost and pattern stability covary and may share common, high order dynamics. Moreover, the attentional focus given to the bimanual coordination and the RT task was also manipulated by requiring either shared attention or priority to the coordination task. Such a manipulation led to a tradeoff between pattern stability and RT performance: The more stable the pattern, the more costly it is to stabilize. This suggests that stabilizing a coordination pattern incurs a central cost that depends on its intrinsic stability. Conceptual consequences of these results for understanding the relationship between attention and coordination are drawn, and the mechanisms putatively at work in dual tasks are discussed.  相似文献   

13.
    
Bimanual coordination requires task-specific control of the spatial and temporal characteristics of the movements of both hands. The present study focused on the spatial relationship between hand movements when their amplitude and direction were manipulated. In the experiment in question, participants were instructed to draw two lines simultaneously. These two lines were instructed to be drawn in mirror symmetric or perpendicular directions of each other while the length was instructed to be the same or different. The coordinative quality of amplitude control was compared when the task required symmetric and asymmetric bimanual spatial coordination patterns. Results showed that the amplitude accuracy decreased when different amplitudes and/or directions had to be generated simultaneously. The coordinative quality of direction was also compared when the task required symmetric and asymmetric bimanual spatial coordination patterns. Unlike amplitude, the direction accuracy was largely independent of coordination symmetry/asymmetry of direction or amplitude. The results suggest that the coordinative quality of amplitude control does not only interfere with amplitude asymmetry, but it also interferes with direction asymmetry. Moreover, in bimanual coordination amplitude control is more vulnerable to the influence of direction control demands than vice versa.  相似文献   

14.
Despite their common origin, studies on motor coordination and on attentional load have developed into separate fields of investigation, bringing out findings, methods, and theories which are diverse if not mutually exclusive. Sitting at the intersection of these two fields, this article addresses the issue of behavioral flexibility by investigating how intention modifies the stability of existing patterns of coordination between moving limbs. It addresses the issue, largely ignored until now, of the attentional cost incurred by the central nervous system (CNS) in maintaining a coordination pattern at a given level of stability, in particular under different attentional priority requirements. The experimental paradigm adopted in these studies provides an original mix of a classical measure of attentional load, namely, reaction time, and of a dynamic approach to coordination, most suitable for characterizing the dynamic properties of coordinated behavior and behavioral change. Findings showed that central cost and pattern stability covary, suggesting that bimanual coordination and the attentional activity of the CNS involved in maintaining such a coordination bear on the same underlying dynamics. Such a conclusion provides a strong support to a unified approach to coordination encompassing a conceptualization in terms of information processing and another, more recent framework rooted in self-organization theories and dynamical systems models  相似文献   

15.
The task of supporting an object with one or two hands was used to test the applicability of the notion of synergy. Subjects sat with their dominant forearm supported up to the wrist while holding a cylindrical “cup” between their thumb and fingers. Force transducers recorded the grip force applied normal to the cup's side by the thumb and the force applied normal to the cup bottom. On different series, a supporting force was added to and released from the bottom of the cup by the subject's non-dominant hand or by the experimenter. As predicted, the results indicated feedforward adjustments of the grip force, and of the EMGs, and significant correlations between grip force and supporting force when they were produced by two hands of one person, and the lack of such closely tied changes when the two forces were produced by two different persons. In the latter case, different subjects could demonstrate grip force changes in different directions. The findings suggest that grip force adjustments represented peripheral patterns of a single central process (a single synergy) rather than being separately controlled focal and postural components of the action.PsycINFO classification: 2330  相似文献   

16.
    
This study assessed how the low back motor control strategies were affected by experimental pain. In twelve volunteers the right m. longissimus was injected by hypertonic and isotonic (control) saline. The pain intensity was assessed on a visual analog scale (VAS). Subjects were seated on a custom-designed chair including a 3-dimensional force sensor adjusted to the segmental height of T1. Electromyography (EMG) was recorded bilaterally from longissimus, multifidus, rectus abdominis, and external oblique muscles. Isometric trunk extensions were performed before, during, and after the saline injections at 5%, 10%, and 20% of maximum voluntary contraction force. Visual feedback of the extension force was provided whereas the tangential force components were recorded. Compared with isotonic saline, VAS scores were higher following hypertonic saline injections (P < .01). Experimental low back pain reduced the EMG activity bilaterally of the rectus abdominis muscles during contractions at 10% and 20% MVC (P < .01) although force accuracy and tangential force variability was not affected. Increased variability in the tangential force composition was found during pain compared with the non-painful condition (P < .05). The immediate adaptation to pain was sufficient to maintain the quality of the task performance; however the long-term consequence of such adaptation is unknown and may overload other structures.  相似文献   

17.
    
Cross-country skiers change technique depending on terrain (incline) and effort (work rate; speed at a particular incline or resistance). The literature is not unequivocal about the influence of incline or speed on the choice of technique, i.e., which of these act as a ‘control parameter’. Identifying task related control parameters for spontaneous technique shifts assists elucidating which mechanisms are active for triggering technique transitions. The aim of this study was to investigate whether speed or incline acted as such control parameter for technique shifts during classic style roller skiing. In this study, we kept the exercise intensity constant while changing two potential control parameters (speed and incline). Thus, any effect of work rate was excluded.Eight male competitive cross-country skiers performed roller skiing on a treadmill while incline was altered from 3 to 11% and back to 3% each minute by 1% and speed changed accordingly to obtain a constant work rate. This protocol was performed at three submaximal work rates (170, 200, and 230 W) to obtain various combinations of speed and incline.The athletes were free to choose their technique (double poling, double poling with kick and diagonal stride), which was identified using continuous phase analysis on the motion of the skis. Physiological response (heart rate, oxygen uptake) was recorded continuously.The incline seemed to affect choice of technique shift more than speed: the ANOVA for repeated measures on all work rates showed no significant effect of incline (p > 0.2) and an effect for speed (p < 0.001). No effect of protocol order (increasing versus decreasing incline) was found for transitions. The physiological response was lowest for conditions of steep incline-low speed and was affected by protocol order. Cycle rate was affected by incline only in the double poling technique.Possible mechanisms related to the triggering of technique transitions are discussed.  相似文献   

18.
When both hands perform concurrent goal-directed reaches, they become yoked to one another. To investigate the direction of this coupling (i.e., which hand is yoked to which), the temporal dynamics of bimanual reaches were compared with equivalent-amplitude unimanual reaches. These reaches were to target pairs located on either the left or right sides of space; meaning that in the bimanual condition, one hand's contralateral (more difficult) reach accompanied by the other hand's ipsilateral (easier) reach. By comparing which hand's difficult reach was improved more by the presence of the other hand's easier ipsilateral reach, we were able to demonstrate asymmetries in the coupling. When the cost of bimanual reaching was controlled for the contralateral reaching left hand's performance was improved, suggesting that the left hand is yoked to the right during motor output. In contrast, the right hand showed the greatest improvements for contralateral reaching in terms of reaction time, pointing toward a dominant role for the left hand in the processes prior to movement onset. The results may point toward a mechanism for integrating the unitary system of attention with bimanual coordination.  相似文献   

19.
Recent physiological studies of the neuronal processes underlying bimanual movements provide new tests for earlier functional models of bimanual coordination. The recently acquired data address three conceptual areas: the generalized motor program (GMP), intermanual crosstalk and dynamic systems models. To varying degrees, each of these concepts has aspects that can be reconciled with experimental evidence. The idea of a GMP is supported by the demonstration of abstract neuronal motor codes, e.g. bimanual-specific activity in motor cortex. The crosstalk model is consistent with the facts that hand-specific coding also exists and that interactions occur between the motor commands for each arm. Uncrossed efferent projections may underlie crosstalk on an executional level. Dynamic interhemispheric interactions through the corpus callosum may provide a high-level link at the parametric programming level, allowing flexible coupling and de-coupling. Flexible neuronal interactions could also underlie adaptive large-scale systems dynamics that can be formalized within the dynamic systems theory approach.

The correspondence of identified neuronal processes with functions of abstract models encourages the development of realistic computational models that can predict bimanual behavior on the basis of neuronal activity.  相似文献   


20.
The current study investigated the interpersonal coordination that occurred between two people when sitting side-by-side in rocking chairs. In two experiments participant pairs rocked in chairs that had the same or different natural periods. By instructing pairs to coordinate their movements inphase or antiphase, Experiment 1 investigated whether the stable patterns of intentional interpersonal coordination were consistent with the dynamics of within person interlimb coordination. By instructing the participants to rock at their own preferred tempo, Experiment 2 investigated whether the rocking chair movements of visually coupled individuals would become unintentionally coordinated. The degree to which the participants fixated on the movements of their co-actor was also manipulated to examine whether visual focus modulates the strength of interpersonal coordination. As expected, the patterns of coordination observed in both experiments demonstrated that the intentional and unintentional interpersonal coordination of rocking chair movements is constrained by the self-organizing dynamics of a coupled oscillator system. The results of the visual focus manipulations indicate that the stability of a visual interpersonal coupling is mediated by attention and the degree to which an individual is able to detect information about a co-actor's movements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号