首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We implemented a virtual reality system to quantify differences in the use of visual feedback to maintain balance during walking between healthy young (n = 12, mean age: 24 years) and healthy old (n = 11, 71 years) adults. Subjects walked on a treadmill while watching a speed-matched, virtual hallway with and without mediolateral visual perturbations. A motion capture system tracked center of mass (CoM) motion and foot kinematics. Spectral analysis, detrended fluctuation analysis, and local divergence exponents quantified old and young adults’ dynamic response to visual perturbations. Old and young adults walked normally with comparable CoM spectral characteristics, lateral step placement temporal persistence, and local divergence exponents. Perturbed visual flow induced significantly larger changes in mediolateral CoM motion in old vs. young adults. Moreover, visual perturbations disrupted the control of lateral step placement and compromised local dynamic stability more significantly in old than young adults. Advanced age induces a greater reliance on visual feedback to maintain balance during waking, an effect that may compensate for degradations in somatosensation. Our findings are relevant to the early diagnosis of sensory-induced balance impairments and also point to the potential use of virtual reality to evaluate sensory rehabilitation and balance training programs for old adults.  相似文献   

2.
The ability to safely negotiate obstacles is an important component of independent mobility, requiring adaptive locomotor responses to maintain dynamic balance. This study examined the effects of aging and visual–vestibular interactions on whole-body and segmental control during obstacle crossing. Twelve young and 15 older adults walked along a straight pathway and stepped over one obstacle placed in their path. The task was completed under 4 conditions which included intact or blurred vision, and intact or perturbed vestibular information using galvanic vestibular stimulation (GVS). Global task performance significantly increased under suboptimal vision conditions. Vision also significantly influenced medial–lateral center of mass displacement, irrespective of age and GVS. Older adults demonstrated significantly greater trunk pitch and head roll angles under suboptimal vision conditions. Similar to whole-body control, no GVS effect was found for any measures of segmental control. The results indicate a significant reliance on visual but not vestibular information for locomotor control during obstacle crossing. The lack of differences in GVS effects suggests that vestibular information is not up-regulated for obstacle avoidance. This is not differentially affected by aging. In older adults, insufficient visual input appears to affect ability to minimize anterior–posterior trunk movement despite a slower obstacle crossing time and walking speed. Combined with larger medial–lateral deviation of the body COM with insufficient visual information, the older adults may be at a greater risk for imbalance or inability to recover from a possible trip when stepping over an obstacle.  相似文献   

3.
The objective of this work was to investigate the influence perturbation direction has on postural responses during overground gait, and whether these responses are age related. Differences in stepping patterns following perturbations of the support surface were examined in the frontal and sagittal planes during forward walking. Eleven young and 10 older adults completed Mini BESTest, hip strength tests, and 45 perturbed walking trials, triggered on heel contact. Lateral perturbations were more challenging to postural stability for both groups. Step length measures showed young adults recovered in the step proceeding the perturbation, while older adults needed additional steps to regain balance. Young adults arrested center of mass movement by producing larger step widths than older adults following the support surface perturbation.  相似文献   

4.
This study examined the prospective control of the swing phase in young healthy adults while walking at preferred speed over unobstructed ground and during obstacle clearance. Three aspects of swing were examined: (1) the relation of the body Center of Mass (CoM) to the stability boundaries at the base of support; (2) a dynamic time-to-contact analysis of the CoM and swing foot to these boundaries; and (3) the role of head movements in the prospective control of gait and field of view assessment. The time-to-contact analysis of CoM and swing foot showed less stable swing dynamics in the trail foot compared to the lead foot in the approach to the unstable equilibrium, with the CoM leading the swing foot and crossing the anterior stability boundary before the swing foot. Compensations in temporal coupling occurred in the trail limb during the late swing phase. Time-to-contact analysis of head movement showed stronger prospective control of the lead foot, while fixation of the field of view occurred earlier in swing and was closer to the body in the obstacle condition compared to unobstructed walking. The dynamic time-to-contact analysis offers a new approach to assessing the unstable swing phase of walking in different populations.  相似文献   

5.
The authors used a stimulus-response compatibility paradigm to assess the effect of changing the estimated time to obstacle contact. A limb-selection cue was presented in different phases of gait to young (n = 5) and to older (n = 4) adults while they were moving toward a foam obstacle in the walking path. A downward saccade was initiated after the cue; the saccade typically occurred during the stance phase of the target limb (the foot cued to lead the step over the obstacle). The mean saccade-step latency after the cue was on the order of -500 ms in both young and elderly participants. On reaching the obstacle, both groups generated an upward saccade approximately -300 ms before target footlift in both groups. Saccades following the limb-selection cue appeared to direct the gaze toward footfall targets just beyond the obstacle, whereas saccades generated just before obstacle footlift moved the gaze to the forward-looking direction. The elderly had significantly longer saccade-trailing-footlift latencies and prolonged gaze-fixation times than did the younger adults. Transient disruptions in optical flow appeared to be necessary for successful obstacle-avoidance behavior when there was an unexpected change in the estimated time to obstacle contact.  相似文献   

6.
The authors used a stimulus-response compatibility paradigm to assess the effect of changing the estimated time to obstacle contact. A limb-selection cue was presented in different phases of gait to young (n = 5) and to older (n = 4) adults while they were moving toward a foam obstacle in the walking path. A downward saccade was initiated after the cue; the saccade typically occurred during the stance phase of the target limb (the foot cued to lead the step over the obstacle). The mean saccade-step latency after the cue was on the order of ?500 ms in both young and elderly participants. On reaching the obstacle, both groups generated an upward saccade approximately ?300 ms before target footlift in both groups. Saccades following the limb-selection cue appeared to direct the gaze toward footfall targets just beyond the obstacle, whereas saccades generated just before obstacle footlift moved the gaze to the forward-looking direction. The elderly had significantly longer saccade-trailing-footlift latencies and prolonged gaze-fixation times than did the younger adults. Transient disruptions in optical flow appeared to be necessary for successful obstacle-avoidance behavior when there was an unexpected change in the estimated time to obstacle contact.  相似文献   

7.
Dynamics of gait adjustments required to go over obstacles and to alter direction of locomotion when cued visually were assessed through the measurement of ground reaction forces, muscle activity, and kinematics. The time of appearance of obstacles of varying heights, their position within the step cycle, and cue lights for direction change were varied. Direction change must be planned in the previous step to reduce the acceleration of the body center of mass toward the landing foot to 0. The inability of steering within the step cycle is due to the incapacity of muscles to rotate the body and translate it along the mediolateral axes. For obstacle avoidance, Ss systematically manipulated the gait patterns as a function of obstacle height and position and the time available within the ongoing step. Greater supraspinal involvement in control of locomotion is found.  相似文献   

8.
Obstacles often appear unexpectedly in our pathway and these require us to make immediate adjustments. Despite how regularly we encounter such situations only few studies have considered how we adjust to unexpected obstacles in the pathway that require us to walk around them. The authors considered how adults adjust to the possibility of an obstacle appearing and then also how foot placement is adjusted to circumvent an obstacle. Fifteen healthy adults walked down an 11-m walkway, initially they were told this was a clear pathway and nothing in the environment would change (no gate), they then performed a series of trials in which a gate may (gate close) or may not (gate open) partially obstruct their pathway. The authors found that mediolateral trunk velocity and acceleration was significantly increased when there was the possibility of an obstacle but before the obstacle appeared. This demonstrates an adaptive walking strategy that seems to enable healthy young adults to successfully circumvent obstacles. The authors also categorized foot placement adjustments and found that adults favored making shorter and wider steps away from the obstacle. They suggest this combination of adjustments allows participants to maintain stability while successfully circumventing the obstacle.  相似文献   

9.
We investigated corrective reactions for backward balance losses during walking. Several biomechanical studies have suggested that backward falling can be predicted from the horizontal position and velocity of the body center of mass (COM) related to the stance foot. Our hypothesis was that corrective reactions for backward balance losses depend on whether the body moves forward or backward after a perturbation. Using a split-belt treadmill, backward balance losses during walking were induced by rapid decreases of belt speed from 3.5 km/h to 2.5, 2.0, 1.5 and 1.0 km/h. We measured kinematic data and surface electromyography (EMG) during corrective reactions while walking on the treadmill. Phase portrait analysis of COM trajectories revealed that backward balance stability was decreased by the perturbations. When the perturbed belt speed was 1.0 km/h, the COM states at toe-off were significantly lower than the stability limit; a rapid touch-down of the swing foot posterior to the stance foot then occurred, and the gait rhythm was modulated so that the phase advanced. EMG recordings during perturbed steps revealed a bilateral response, including modulation of the swing leg during the recovery. For weaker perturbations, the swing foot placements were anterior to the stance foot and there was a phase delay. In contrast to the bilateral responses for stronger perturbations, unilateral EMG responses were observed for weaker perturbations. The differences in joint kinematics and EMG patterns in the unperturbed swing leg depended on the COM states at toe-off, suggesting the existence of different responses consisting of ongoing swing movements and rapid touch-down. Thus, we conclude that corrective reactions for backward balance losses are not only phase-dependent but also state-dependent. In addition, the control system for backward balance losses predicts the feasibility of forward progression and modulates swing movement and walking rhythm according to backward balance stability.  相似文献   

10.
Simultaneous control of lower limb stepping movements and trunk motion is important for skilled walking; adapting gait to environmental constraints requires frequent alternations in stepping and trunk motion. These alterations provide a window into the locomotor strategies adopted by the walker. The authors examined gait strategies in young and healthy older adults when manipulating step width. Anteroposterior (AP) and mediolateral (ML) smoothness (quantified by harmonic ratios) and stepping consistency (quantified by gait variability) were analyzed during narrow and wide walking while controlling cadence to preferred pace. Results indicated older adults preserved ML smoothness at the expense of AP smoothness, shortened their steps, and exhibited reduced stepping consistency. The authors conclude that older adults prioritized ML control over forward progression during adaptive walking challenges.  相似文献   

11.
The ability to adequately avoid obstacles while walking is an important skill that allows safe locomotion over uneven terrain. The high proportion of falls in the elderly that is associated to tripping over obstacles potentially illustrates an age-related deterioration of this locomotor skill. Some studies have compared young and old adults, but very little is known about the changes occurring within different age groups of elderly. In the present study, obstacle avoidance performance was studied in 25 young (20-37 years) and 99 older adults (65-88 years). The participants walked on a treadmill at a speed of 3 km/h. An obstacle was dropped 30 times in front of the left foot at various phases in the step cycle. Success rates (successful avoidance) were calculated and related to the time available between obstacle appearance and the estimated instant of foot contact with the obstacle (available response times or ARTs ranging from 200 to more than 350 ms). In addition, latencies of avoidance reactions, the choice of avoidance strategies (long or short step strategy, LSS or SSS), and three spatial parameters related to obstacle avoidance (toe distance, foot clearance, and heel distance) were determined for each participant. Compared to the young, the older adults had lower success rates, especially at short ARTs. Furthermore, they had longer reaction times, more LSS reactions, smaller toe and heel distances, and larger foot clearances. Within the group of elderly, only the 65-69 year olds were not different from young adults with respect to success rate, despite marked changes in the other parameters measured. In particular, even this younger group of elderly showed a dramatic reduction in the amount of SSS trials compared to young adults. Overall, age was a significant predictor of success rates, reaction times, and toe distances. These parameters deteriorated with advancing age. Finally, avoidance success rates at short ARTs were considerably worse in elderly participants who sustained recurrent falls in the six-month period prior to the assessment compared to those who sustained no or only one fall. An exercise program has been shown to improve avoidance success rates, especially at short ARTs, but the training effects on the determinants of success still need to be assessed.  相似文献   

12.
In our prior studies, participants walked and grasped a dowel using an anticipatory mode of control. However, it is unknown how this combined task would change in a less predictable environment. We investigated the online control aspects involved in the combined task of walking and grasping under different coordination patterns between upper- and lower-limbs in young adults. Fifteen young adults walked and grasped a dowel under several experimental conditions combining the instant of visual cue appearance and coordination pattern of upper and lower limbs used to grasp the dowel. Visual cues provided two steps ahead or earlier were enough for executing the combined task of walking and prehension appropriately. Visual cues provided within this window impacted both walking stability and the execution of the prehension movement. Although an ipsilateral arm-leg coordination pattern increased mediolateral stability, a contralateral pattern significantly decreased mediolateral center of mass stability when the visual cue appeared one-step before grasping the object. These results imply that acquiring information to plan the combined task of walking and reaching for an object two steps ahead allows the maintenance of the general movement characteristics present when the decision to reach out for the object is defined two or more steps ahead. These results indicate that the prehension movement is initiated well before heel contact on that side when given sufficient planning time, but that a disruption of the natural arm-leg coordination dynamics emerges to accomplish the task when the cue is provided one step before the object.  相似文献   

13.
There is increasing evidence that indicates a critical transition period for the maturation of postural control from the ages of 6–7 years. Some studies suggest that this transitional period may be explained by a change from a ballistic toward a sensory strategy, but the cause remains unknown. The purpose of this study was to investigate the influence of the transition period on dynamic postural control in a natural self-initiated leaning task under different sensory conditions. We evaluated the center of pressure (COP) displacement during maximum leaning in four directions (forward, backward, rightward, leftward) under three sensory conditions (eyes open, eyes closed and eyes closed standing on a foam). Three groups were tested: young children (4 years old), older children (8–10 years old) and adults (21–42 years old). The maximum COP excursion along the anteroposterior and mediolateral axes and the COP amplitude were analyzed. Young children showed smaller maximum anteroposterior and mediolateral COP excursion than other groups. Older children also exhibited a significantly smaller maximum excursion along the mediolateral direction but performed similar to adults along the anteroposterior direction. In a similar manner, the analysis of the COP amplitude did not indicate any differences between the groups along the anteroposterior axis. In contrast, along the mediolateral axis, the results showed developmental differences. Furthermore, the effect of sensory conditions was similar across the children's groups. Our results suggest an important plasticity period for the maturation of postural control mechanisms. Notably, our findings support the idea that the postural mechanisms controlling the anteroposterior axis reach maturity before the mechanisms involved in controlling the mediolateral axis.  相似文献   

14.
The authors examined how individuals adapt their gait and regulate their body configuration before altering direction during walking. Eight young adults were asked to change direction during walking with different turning angles (0deg;, 45deg;, 90deg;), pivot foot (left, right), and walking speeds (normal and fast). The authors used video and force platform systems to determine participants' whole-body center of mass and the center of pressure during the step before they changed direction. The results showed that anticipatory postural adjustments occurred during the prior step and occurred earlier for the fast walking speed. Anticipatory postural adjustments were affected by all 3 variables (turn angle, pivot foot, and speed). Participants leaned backward and sideward on the prior step in anticipation of the turn. Those findings indicate that the motor system uses central control mechanisms to predict the required anticipatory adjustments and organizes the body configuration on the basis of the movement goal.  相似文献   

15.
The authors examined how individuals adapt their gait and regulate their body configuration before altering direction during walking. Eight young adults were asked to change direction during walking with different turning angles (0 degree, 45 degree, 90 degree), pivot foot (left, right), and walking speeds (normal and fast). The authors used video and force platform systems to determine participants' whole-body center of mass and the center of pressure during the step before they changed direction. The results showed that anticipatory postural adjustments occurred during the prior step and occurred earlier for the fast walking speed. Anticipatory postural adjustments were affected by all 3 variables (turn angle, pivot foot, and speed). Participants leaned backward and sideward on the prior step in anticipation of the turn. Those findings indicate that the motor system uses central control mechanisms to predict the required anticipatory adjustments and organizes the body configuration on the basis of the movement goal.  相似文献   

16.
Emerging evidence highlights that arm movements exert a substantial and functionally relevant contribution on quiet standing balance control in young adults. Ageing is associated with “non-functional” compensatory postural control strategies (i.e., lower limb co-contraction), which in turn, may increase the reliance on an upper body strategy to control upright stance. Thus, the primary purpose of this study was to compare the effects of free versus restricted arm movements on balance performance in young and older adults, during tasks of different difficulty. Fifteen young (mean ± SD age; 21.3 ± 4.2 years) and fifteen older (mean ± SD age; 73.3 ± 5.0 years) adults performed bipedal, semi-tandem and tandem balance tasks under two arm position conditions: restricted arm movements and free arm movements. Centre of pressure (COP) amplitude and frequency were calculated as indices of postural performance and strategy, respectively. Especially in older adults, restriction of arm movement resulted in increased sway amplitude and frequency, which was primarily observed for the mediolateral direction. Further, increasing balance task difficulty raised the arm restriction cost (ARC; a new measure to quantify free vs. restricted arm movement differences in postural control) that was more prominent in older adults. These findings indicate the ARC provides a measure of reliance on the upper body for balance control and that arm movement is important for postural control in older adults, especially during tasks of greater difficulty.  相似文献   

17.
The authors addressed balance control in children from the perspective of skill development and examined the relationship between specific perceptual and motor skills and static and dynamic balance performance. Fifty 11- to 13-year-old children performed a series of 1-legged balance tasks while standing on a force platform. Postural control was reflected in the maximum displacement of the center of mass in anterior-posterior and mediolateral directions. Simple visual, discrimination, and choice reaction times; sustained attention; visuomotor coordination; kinesthesis; and depth perception were also assessed in a series of perceptual and motor tests. The correlation analysis revealed that balancing under static conditions was strongly associated with the ability to perceive and process visual information, which is important for feedback-based control of balance. On the other hand, when greater task demands were imposed on the system under dynamic balancing conditions, the ability to respond to the destabilizing hip abductions-adductions in order to maintain equilibrium was associated with motor response speed, suggesting the use of a descending, feedforward control strategy. Therefore, like adults, 11- to 13-year-old children have the ability to select varying balance strategies (feedback, feedforward, or both), depending on the constraints of a particular task.  相似文献   

18.
The authors addressed balance control in children from the perspective of skill development and examined the relationship between specific perceptual and motor skills and static and dynamic balance performance. Fifty 11- to 13-year-old children performed a series of 1-legged balance tasks while standing on a force platform. Postural control was reflected in the maximum displacement of the center of mass in anterior-posterior and mediolateral directions. Simple visual, discrimination, and choice reaction times; sustained attention; visuomotor coordination; kinesthesis; and depth perception were also assessed in a series of perceptual and motor tests. The correlation analysis revealed that balancing under static conditions was strongly associated with the ability to perceive and process visual information, which is important for feedback-based control of balance. On the other hand, when greater task demands were imposed on the system under dynamic balancing conditions, the ability to respond to the destabilizing hip abductions-adductions in order to maintain equilibrium was associated with motor response speed, suggesting the use of a descending, feedforward control strategy. Therefore, like adults, 11- to 13-year-old children have the ability to select varying balance strategies (feedback, feedforward, or both), depending on the constraints of a particular task.  相似文献   

19.
While epidemiologic data suggests that one in four older adults have difficulty performing stooping and crouching (SC) tasks, little is known about how aging affects SC performance. This study investigated differences between young and older adults in lower limb kinematics and underfoot center of pressure (COP) measures when performing a series of SC tasks. Twelve healthy younger and twelve healthy older participants performed object-retrieval tasks varying in: (1) initial lift height, (2) precision demand, and (3) duration. Whole-body center of mass (COM), underfoot COP, and hip and knee angular kinematics (maximum angles and velocities) were analyzed. Compared to younger, older participants moved slower when transitioning into and out of pick-up postures that were characterized by less hip and knee flexion. Older participants also showed a diminished ability to adapt to the changing postural demands of each set of tasks. This was especially evident during longer tasks, whereby older individuals avoided high knee flexion crouching postures that were commonly used by younger participants. Older adults also tended to exhibit faster and more frequent COP trajectory adjustments in the anterior–posterior direction. It is likely that limitations in physical characteristics such as lower limb strength and range of motion contributed to these differences.  相似文献   

20.
Investigating an ecologically relevant upper limb task, such as manually transporting an object with a concurrent lateral change in support (sidestepping alongside a kitchen counter), may provide greater insight into potential deficits in postural stability, variability and motor coordination in older adults. Nine healthy young and eleven older, community dwelling adults executed an upper limb object transport task requiring a lateral change in support in two directions at two self-selected speeds, self-paced and fast-paced. Dynamic postural stability and movement variability was quantified via whole-body center of mass motion. The onset of lead lower limb movement in relation to object movement onset was quantified as a measure of motor coordination. Older adults demonstrated similar levels of stability and variability as their younger counterparts, but at slower peak movement velocity and increased task duration. Furthermore, older adults demonstrated asymmetrical motor coordination between left and right task directions, while younger adults remained consistent regardless of task direction. Thus, older adults significantly modulated movement speed and motor coordination to maintain similar levels of stability and variability compared to their younger counterparts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号