首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of information in the processes underlying kinematic trajectory-formation was examined by manipulating the relation between effector space (movement of a hand-held stylus on a graphics tablet) and task space (movement of a cursor on a screen where targets were presented) in a precision aiming task with five different levels of task difficulty. Movement patterns were found to evolve as a function of the flow of information in task space, with participants (N = 13) producing more rapid and more fluent movements when the mapping between spaces included the softening-spring characteristics typical of behavioural patterns at higher levels of task difficulty. We conclude that the kinematic changes (movement time and pattern) observed when task difficulty increases result from informational influences. Information affects behavioural dynamics at the level of the parameters without affecting the underlying dynamical structure.  相似文献   

2.
To address the neglected question of how cognitive and perceptual-motor processes are coordinated, the authors asked participants to move a cursor from one target to another to reveal operators and operands for a running arithmetic task. In Experiment I performance on this task was compared with performance on tasks requiring only aiming or only arithmetic. Aiming was faster in the aiming-only task than in the combined task. More importantly, times for steps requiring calculation were equivalent in the combined and arithmetic-only tasks. The results from this and a second experiment suggest that participants slowed their aiming to allow calculations to be completed before subsequent targets were entered. As a whole, the results suggest that cognitive and perceptual-motor processes are coordinated through scheduling.  相似文献   

3.
An experiment was designed to determine the degree to which reciprocal aiming movements of the wrist and arm with various accuracy requirements (Fitts' tasks) are enhanced by extended practice. The vast majority of research on motor learning shows performance improvement over practice. However, literature examining the effect of practice on Fitts' task performance is limited and inconclusive. Participants were asked to flex/extend their limb/lever in the horizontal plane at the wrist (arm stabilized) or elbow joint (wrist stabilized) in an attempt to move back and forth between two targets as quickly and accurately as possible. The targets and current position of the limb were projected on the screen in front of the participant. Target width was manipulated with amplitude constant (16°) in order to create indexes of difficulty (ID) of 1.5, 3, 4.5, and 6. Contrary to the earlier reports, after 20 days of practice, we found minimal changes in movement time or the movement time-ID relationships for the arm and wrist over practice. However, the variability in the movement endpoints decreased over practice and wrist movements at ID=6 were characterized by shorter movement times and longer dwell times relative to arm movements with dwell time for the wrist increasing over practice. These data are consistent with the notion that Fitts' tasks provide a stable measure of perceptual-motor capabilities.  相似文献   

4.
Metacognitive control has been studied in intellectual skills but has not yet been studied in perceptual-motor skills. To probe metacognitive control in a perceptual-motor context, we developed a task in which participants chose the position of a cursor relative to two targets. One of the two targets was randomly erased. Participants tried to move the cursor into the remaining target within a limited amount of time. The target widths were varied, making the difficulty of moving to either target dependent on the chosen cursor position. Predictions were based on the assumption that participants could use an analogue of Fitts’s law to choose optimal positions. The fit between observed and predicted positions was excellent, suggesting that participants used information about movement speed-accuracy trade-offs to guide movement preparation. The findings suggest that metacognition applies to both perceptual-motor skills and intellectual skills, and that these two domains are more similar than traditionally assumed.  相似文献   

5.
Safely crossing an intersection requires that drivers actively control their approach to the intersection with respect to characteristics of the flow of incoming traffic. To further our understanding of the perceptual-motor processes involved in this demanding manoeuvre, we designed a driving simulator experiment in which 13 participants actively negotiated intersections by passing through a gap in the train of incoming traffic. Task constraints were manipulated by varying the size of the traffic gap and the initial conditions with respect to the time of arrival of the traffic gap at the intersection. Environment constraints were manipulated by varying the intersection geometry through changes in the angle formed by the crossroads. The results revealed that the task constraints systematically gave rise to continuous and gradual adjustments in approach velocity, initiated well before arriving at the intersection. These functionally appropriate adjustments allowed the drivers to safely cross the intersection, generally just slightly ahead of the center of the traffic gap. Notwithstanding the fact that the geometry of the intersection did not affect the spatiotemporal constraints of the crossing task, approach behavior varied systematically over geometries, suggesting that drivers rely on the traffic gap's bearing angle. Overall, the pattern of results is indicative of a continuous coupling between perception and action, analogous to that observed in locomotor interception tasks.  相似文献   

6.
The goal of this study was to examine how the kinematics of reciprocal aiming movements were affected by both the objective of the movement and the constraints operating on that movement. In Experiment 1, the objective of the movement was indirectly manipulated by capitalizing on the fact that subjects determine their own accuracy and speed limits, despite uniform task instructions to move as quickly and accurately as possible. A Fitts' type reciprocal aiming paradigm was employed, in which 69 subjects were asked to move a stylus repetitively between two spatially separated targets. Four target widths were orthogonally combined with four movement amplitudes, resulting in 16 conditions. Movements were made on an X-Y digitizing tablet. Based on the mean variable error produced on both targets, subjects were differentiated post hoc into three movement objective groups: speed, accuracy, and speed-plus-accuracy. Kinematic analyses revealed that the programming and execution of movements were systematically influenced by both the movement objective and the movement constraints. That is, movement time, peak velocity, dwell time, acceleration and deceleration time, normalized acceleration and normalized deceleration varied systematically as a function of both the speed-accuracy movement objective and the movement constraints of target size and movement distance. Moreover, the consequences of changing the constraints of the movement were affected by an interaction with the objective of the movement. In Experiment 2, the objective of the movement was directly manipulated by varying speed and/or accuracy instructions to subjects. The basic results of Experiment 1 were substantiated. Overall, the results were consistent with the view that motor control is dependent upon sensory consequences.  相似文献   

7.
In a series of three experiments the visual modulation of movement during a reciprocal aiming task was examined when participants were confronted with sudden changes in visually specified task constraints. Amplitude and precision constraints were manipulated independently in Experiments 1 and 2, respectively, while their simultaneous effects were analyzed in Experiment 3. Analysis of the evolution of kinematic characteristics following a sudden change in task constraints revealed two different times scales of adaptation: a rapid adjustment occurring during the deceleration phase of the first movement following change and a more gradual adaptation, affecting the kinematic pattern as a whole, occurring over the next few movements. Overall, the results indicate that visual information with respect to the adequacy of the unfolding movement is continuously monitored, even under the least constraining conditions, and serves to modulate the pattern of movement to (a) comply with the (new) task constraints and (b) optimally tailor the pattern of movement to the situation at hand. We interpret these findings in the framework of a dynamical perspective on movement organization, with information modulating the parameters of an otherwise invariant underlying dynamical structure.  相似文献   

8.
The goal of this study was to examine how the kinematics of reciprocal aiming movements were affected by both the objective of the movement and the constraints operating on that movement. In Experiment 1, the objective of the movement was indirectly manipulated by capitalizing on the fact that subjects determine their own accuracy and speed limits, despite uniform task instructions to move as quickly and accurately as possible. A Fitts' type reciprocal aiming paradigm was employed, in which 69 subjects were asked to move a stylus repetitively between two spatially separated targets. Four target widths were orthogonally combined with four movement amplitudes, resulting in 16 conditions. Movements were made on an X-Y digitizing tablet. Based on the mean variable error produced on both targets, subjects were differentiated post hoc into three movement objective groups: speed, accuracy, and speed-plus-accuracy. Kinematic analyses revealed that the programming and execution of movements were systematically influenced by both the movement objective and the movement constraints. That is, movement time, peak velocity, dwell time, acceleration and deceleration time, normalized acceleration and normalized deceleration varied systematically as a function of both the speed-accuracy movement objective and the movement constraints of target size and movement distance. Moreover, the consequences of changing the constraints of the movement were affected by an interaction with the objective of the movement. In Experiment 2, the objective of the movement was directly manipulated by varying speed and/or accuracy instructions to subjects. The basic results of Experiment 1 were substantiated. Overall, the results were consistent with the view that motor control is dependent upon sensory consequences.  相似文献   

9.
《Human movement science》1986,5(2):173-183
A probe reaction-time paradigm was used to investigate the capacity demands of planning rapid aiming movements. Subjects were required to respond either vocally or manually to an auditory probe presented during the reaction-time interval preceding a pointing response. When a vocal response was required probe reaction time increased systematically with the complexity of the pointing movements. Presumably this is because a more complex task requires more programming resources. When a manual response was required, reaction-time data for both the pointing task and the probe indicate that the structural constraints inherent in programming two similar movements may force subjects to engage in common response preparation. The methodological and theoretical implications of these findings are discussed.  相似文献   

10.
Motor skills that require limbs to concurrently produce different spatiotemporal patterns are often quite difficult to learn. This article outlines a general strategy for training subjects to perform skills that require such disparate limb movements. The strategy is based on the notion that certain preferred movement patterns naturally emerge through the dynamics of the perceptual-motor system, even when quite different movements are intended. The training strategy proposes that the acquisition of relative motion patterns that diverge from preferred patterns can be facilitated by initially "tuning" system dynamics to reduce interlimb attraction. The schedule for the dynamical tuning is adopted from the adaptive training method previously applied to tracking tasks. Preliminary evidence is provided in support of this strategy for learning a bimanual task requiring both structural and metrical interlimb decoupling.  相似文献   

11.
The bimanual coupling literature supposes an inherent drive for synchrony between the upper limbs when making discrete bimanual movements. The level of synchrony is argued to be task dependent, reliant on the visual demands of the two targets, and the result of a complex pattern of hand and eye movements (Bingham, Hughes, & Mon-Williams, 2008 ; Riek, Tresilian, Mon-Williams, Coppard, & Carson, 2003 ). However, recent work by Bruyn and Mason ( 2009 ) suggests that temporal coordination is not solely influenced by visual saccades. In this experimental series, a total of 8 participants performed congruent movements to targets either near or far from the midline. Targets far from the midline, requiring a visual saccade, resulted in greater terminal asynchrony. Initial and terminal asynchrony were not consistent, but linked to the task demands at that stage of the movement. If the asynchrony evident at the end of a bimanual movement is due to a complex pattern of hand and eye movements then the removal of visual feedback should result in an increase in synchrony. Sixteen participants then completed congruent and incongruent bimanual aiming movements to near and/or far targets. Movements were made with or without visual feedback of hands and targets. Analyses revealed that movements made without visual feedback showed increased synchrony between the limbs, yet movements to incongruent targets still showed greater asynchrony. We suggest that visual constraints are not the sole cause of asynchrony in discrete bimanual movements.  相似文献   

12.
Abstract

An external focus of attention is considered superior to an internal focus for learning and performance. However, findings specific to changing the task difficulty are inconsistent. The present study used a reciprocal aiming task to determine the effects of attentional focus on motor performance using speed-accuracy paradigm. We constrained timing to examine how internal and external focus of attention influenced accuracy when task difficulty changes. The results indicated greater accuracy on the right target and greater consistency on both targets for the external focus condition, regardless of task difficulty. Our results uniquely demonstrated how instruction modified a speed-accuracy task.  相似文献   

13.
Bimanual coordination is governed by constraints that permit congruent movements to be performed more easily than incongruent movements. Theories concerning the origin of these constraints range from low level motor-muscle explanations to high level perceptual–cognitive ones. To elucidate the processes underlying coordinative constraints, we asked subjects to use a pair of left–right joysticks to acquire corresponding pairs of congruent and incongruent targets presented on a video monitor under task conditions designed to systematically modulate the impact of several perceptual–cognitive processes commonly required for bimanual task performance. These processes included decoding symbolic cues, detecting goal targets, conceptualizing movements in terms of goal target configuration, planning movement trajectories, producing saccades and perceiving visual feedback. Results demonstrate that constraints arise from target detection and trajectory planning processes that can occur prior to movement initiation as well as from inherent muscle properties that emerge during movement execution, and that the manifestation of these constraints can be significantly altered by the ability to visually monitor movement progress.  相似文献   

14.
Thirty-two children with Developmental Coordination Disorder (DCD) and learning disabilities (LD) and their age-matched controls attending normal primary schools were investigated using kinematic movement analysis of fine-motor performance. Three hypotheses about the nature of the motor deficits observed in children with LD were tested: general slowness hypothesis, limited information capacity hypothesis, and the motor control mode hypothesis. Measures of drawing movements were analyzed under different task conditions using a Fitts' paradigm. In a reciprocal aiming task, the children drew straight-line segments between two targets 2.5 cm apart. Three Target Sizes were used (0.22, 0.44, and 0.88 cm). Children used an electronic pen that left no trace on the writing tablet. To manipulate the degree of open-loop movement control, the aiming task was performed under two different control regimes: discrete aiming and cyclic aiming. The kinematic analysis of the writing movements of the 32 children with DCD/LD that took part in the experimental study confirmed that besides learning disabilities they have a motor learning problem as well. Overall, the two groups did not differ in response time, nor did they respond differently according to Fitts' Law. Both groups displayed a conventional trade-off between Target Size and average Movement Time. However, while movement errors for children with DCD/LD were minimal on the discrete task, they made significantly more errors on the cyclic task. This, together with faster endpoint velocities, suggests a reduced ability to use a control strategy that emphasizes the terminal control of accuracy. Taken together, the results suggest that children with DCD/LD rely more on feedback during movement execution and have difficulty switching to a feedforward or open-loop strategy.  相似文献   

15.
A substantial body of research has examined the speed-accuracy tradeoff captured by Fitts’ law, demonstrating increases in movement time that occur as aiming tasks are made more difficult by decreasing target width and/or increasing the distance between targets. Yet, serial aiming movements guided by internal spatial representations, rather than by visual views of targets have not been examined in this manner, and the value of confirmatory feedback via different sensory modalities within this paradigm is unknown. Here we examined goal-directed serial aiming movements (tapping back and forth between two targets), wherein targets were visually unavailable during the task. However, confirmatory feedback (auditory, haptic, visual, and bimodal combinations of each) was delivered upon each target acquisition, in a counterbalanced, within-subjects design. Each participant performed the aiming task with their pointer finger, represented within an immersive virtual environment as a 1 cm white sphere, while wearing a head-mounted display. Despite visual target occlusion, movement times increased in accordance with Fitts’ law. Though Fitts’ law captured performance for each of the sensory feedback conditions, the slopes differed. The effect of increasing difficulty on movement times was least influential in the haptic condition, suggesting more efficient processing of confirmatory haptic feedback during aiming movements guided by internal spatial representations.  相似文献   

16.
The study investigated how children with heavy prenatal alcohol exposure regulate movement speed and accuracy during goal-directed movements. 16 children ages 7 to 17 years with confirmed histories of heavy in utero alcohol exposure, and 21 nonalcohol-exposed control children completed a series of reciprocal tapping movements between two spatial targets. 5 different targets sets were presented, representing a range of task difficulty between 2 and 6 bits of information. Estimates of percent error rate, movement time, slope, and linear fit of the resulting curve confirmed that for goal-directed, reciprocal tapping responses, performance of the group with prenatal alcohol exposure was described by a linear function, as predicted by Fitts' law, by sacrificing movement accuracy. The index of performance was the same for the two groups: it initially increased, then leveled off for more difficult movements.  相似文献   

17.
Multiple object tracking (MOT) requires visually attending to dynamically moving targets and distractors. This cognitive ability is based on perceptual-attentional processes that are also involved in goal-directed movements. This study aimed to test the hypothesis that MOT affects the motor performance of aiming movements. Therefore, the participants performed pointing movements using their fingers or a computer mouse that controlled the movements of a cursor directed at the targets in the MOT task. The precision of the pointing movements was measured, and it was predicted that a higher number of targets and distractors in the MOT task would result in a lower pointing precision. The results confirmed this hypothesis, indicating that MOT might influence the performance of motor actions. The potential factors underlying this influence are discussed.  相似文献   

18.
An experiment was conducted to examine the contribution of the hemispheres to the organization of aiming movements. The spatial positions of targets were obtained by extrapolating from brief visual displays of geometric patterns. The patterns comprised linear, quadratic, cubic, and quartic mathematical functions and varied in spatial complexity. Vision of the hand was also manipulated. While the hands did not differ in spatial accuracy, movements made by the right hand were of shorter duration and had higher peak velocities. The stimulus pattern strongly influenced kinematics, in particular the number of discrete modifications of the movement trajectory. Vision of the hand resulted in superior accuracy, although subjects were unable to compare the relative positions of the limb and the target. Vision of the hand did not lead to an increase in discrete adjustments, suggesting that visual information was used in a continuous fashion. Movements into ipsilateral space differed from those into contralateral space with respect to a number of parameters.  相似文献   

19.
Practice has been conceptualized in terms of a search process through an evolving perceptual-motor workspace. The experiment was set up to examine whether the inherent variability of the system would influence perception of the relevant properties of the task space. We reanalyzed the data from Hsieh, Liu, Mayer-Kress, and Newell (2013) in which participants performed a speed-accuracy aiming task and feedback emphasized either temporal or spatial accuracy in different conditions. The maximum variability in spatial error during practice differentiated individual's best performance in the fast speed-accuracy conditions. Additionally, we found that a threshold of variability predicted discontinuities during practice within individuals. The findings support the proposition that inherent variability affords perception of the relevant dimension of the task. The search motion through the perceptual-motor workspace was continuous or discontinuous depending on the constraints of the movement speed-accuracy condition.  相似文献   

20.
Most research based on Fitts' law define a log-linear relationship between temporal and spatial accuracy in goal-directed aiming tasks using stationary targets. Whether this relationship holds or not when the targets have varying velocities, and how the behavioral strategies and physical activities may change accordingly are of interest. The aim of this study was to investigate the relationship between temporal and spatial accuracy in goal-directed aiming tasks with moving targets. Participants were asked to aim at two target widths using a joystick. Results demonstrated that in a goal-directed aiming task there was a negative effect on performance when target velocity was increased or target width was decreased. Participants moved faster and then made more systematic errors in a high-velocity target condition. Results may be applicable to the complex perceptual-motor behavior of people who perform tasks using computers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号