首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
Research on the lateralisation of brain functions for emotion has yielded different results as a function of whether it is the experience, expression, or perceptual processing of emotion that is examined. Further, for the perception of emotion there appear to be differences between the processing of verbal and nonverbal stimuli. The present research examined the hemispheric asymmetry in the processing of verbal stimuli varying in emotional valence. Participants performed a lexical decision task for words varying in affective valence (but equated in terms of arousal) that were presented briefly to the right or left visual field. Participants were significantly faster at recognising positive words presented to the right visual field/left hemisphere. This pattern did not occur for negative words (and was reversed for high arousal negative words). These results suggest that the processing of verbal stimuli varying in emotional valence tends to parallel hemispheric asymmetry in the experience of emotion.  相似文献   

2.
This fMRI study investigated phonological vs. auditory temporal processing in developmental dyslexia by means of a German vowel length discrimination paradigm (Groth, Lachmann, Riecker, Muthmann, & Steinbrink, 2011). Behavioral and fMRI data were collected from dyslexics and controls while performing same-different judgments of vowel duration in two experimental conditions. In the temporal, but not in the phonological condition, hemodynamic brain activation was observed bilaterally within the anterior insular cortices in both groups and within the left inferior frontal gyrus (IFG) in controls, indicating that the left IFG and the anterior insular cortices are part of a neural network involved in temporal auditory processing. Group subtraction analyses did not demonstrate significant effects. However, in a subgroup analysis, participants performing low in the temporal condition (all dyslexic) showed decreased activation of the insular cortices and the left IFG, suggesting that this processing network might form the neural basis of temporal auditory processing deficits in dyslexia.  相似文献   

3.
The aim of the present study is to investigate the learning-related changes in brain activation induced by the training of hypothesis generation skills regarding biological phenomena. Eighteen undergraduate participants were scanned twice with functional magnetic resonance imaging (fMRI) before and after training over a period of 2 months. The experimental group underwent eight biological hypothesis generation training programs, but the control group was not given any during the 2-month period. The results showed that the left frontal gyri, the cingulate gyrus, and the cuneus were activated during hypothesis generation. In addition, the brain activation of the trained group increased in the left inferior and the superior frontal gyri, which are related to working memory load and higher-order inferential processes. However, the activation after training decreased in the occipito-parietal route, which is associated with the perception and the analysis processes of visual information. Furthermore, the results have suggested that the dorsolateral prefrontal cortex (DLPFC) region is the critical area in the training of hypothesis generation skills.  相似文献   

4.
The hypothesized role of Broca’s area in sentence processing ranges from domain-general executive function to domain-specific computation that is specific to certain syntactic structures. We examined this issue by manipulating syntactic structure and conflict between syntactic and semantic cues in a sentence processing task. Functional neuroimaging revealed that activation within several Broca’s area regions of interest reflected the parametric variation in syntactic-semantic conflict. These results suggest that Broca’s area supports sentence processing by mediating between multiple incompatible constraints on sentence interpretation, consistent with this area’s well-known role in conflict resolution in other linguistic and non-linguistic tasks.  相似文献   

5.
This study was designed to identify the neural network supporting the semantic processing of visual words in a patient with large-scale damage to left-hemisphere (LH) language structures. Patient GP, and a control subject, RT, performed semantic and orthographic tasks while brain-activation patterns were recorded using functional magnetic resonance imaging. In RT, the semantic-orthographic comparison activated LH perisylvian and extrasylvian temporal regions comparable to the network of areas activated by non-brain-damaged subjects in other neuroimaging studies of semantic discrimination. In GP, the same comparison activated homologous right-hemisphere regions, demonstrating the ability of the right hemisphere to subserve visual lexicosemantic processes. The results are discussed within the context of the normal right hemisphere's capacity for semantic processing of visual words. Examining results from functional neuroimaging studies on recovery in the context of innate hemispheric abilities may enable reconciliation of disparate claims about mechanisms supporting recovery from aphasia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号