首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ss made magnitude estimates of the perceived roughness of grooved aluminum plates. Two aspects of the touching process were altered and their effects upon roughness examined. Roughness increased with increasing finger force, regardless of whether the S or the E chose the values. Rate of hand motion had a negligible effect on perceived roughness, indicating a roughness constancy and providing further evidence of the relative unimportance of vibratory frequency. The effects of these components of the touching process were discussed in terms of an active-passive continuum rather than a dichotomy. Perceived roughness declined with increasing land width (with narrow grooves), although only over the widest half of the land range; there was no land effect when the grooves were wide. In addition to these macrostructural parameters, the effects of two stimulus production techniques were compared. The discrepancies between the two sets of data were interpreted in terms of the microscopic irregularities of the plate surfaces. The findings were briefly related to an analysis of perceived roughness of grooved surfaces in terms of static deformation of the skin.  相似文献   

2.
Vibratory roughness perception occurs when people feel a surface with a rigid probe. Accordingly, perceived roughness should reflect probe and surface geometry, exploratory speed, and force. Experiments 1 and 2 compared magnitude estimation of roughness with the bare finger and two types of probes, one designed to eliminate force moments, under the subject's active control. Experiments 3 and 4 varied speed under passive control. Log magnitude was consistently a quadratic function of log spacing between elements in the surface. The location of the function's peak was related to the drop point--that is, the spacing at which the probe can just drop between elements--which is affected by probe tip diameter, element height, and speed. Other parameters of the quadratic were affected by probe type and speed.  相似文献   

3.
Subjects made roughness judgments of textured surfaces made of raised elements, while holding stick-like probes or through a rigid sheath mounted on the fingertip. These rigid links, which impose vibratory coding of roughness, were compared with the finger (bare or covered with a compliant glove), using magnitude-estimation and roughness differentiation tasks. All end effectors led to an increasing function relating subjective roughness magnitude to surface interelement spacing, and all produced above-chance roughness discrimination. Although discrimination was best with the finger, rigid links produced greater perceived roughness for the smoothest stimuli. A peak in the magnitude-estimation functions for the small probe and a transition from calling more sparsely spaced surfaces rougher to calling them smoother were predictable from the size of the contact area. The results indicate the potential viability of vibratory coding of roughness through a rigid link and have implications for teleoperation and virtual-reality systems.  相似文献   

4.
Subjects made roughness judgments of textured surfaces made of raised elements, while holding stick-like probes or through a rigid sheath mounted on the fingertip. These rigid links, which impose vibratory coding of roughness, were compared with the finger (bare or covered with a compliant glove), using magnitude-estimation and roughness differentiation tasks. All end effectors led to an increasing function relating subjective roughness magnitude to surface interelement spacing, and all produced above-chance roughness discrimination. Although discrimination was best with the finger, rigid links produced greater perceived roughness for the smoothest stimuli. A peak in the magnitude-estimation functions for the small probe and a transition from calling more sparsely spaced surfaces rougher to calling them smoother were predictable from the size of the contact area. The results indicate the potential viability of vibratory coding of roughness through a rigid link and have implications for teleoperation and virtual-reality systems.  相似文献   

5.
The magnitude of perceived roughness was haptically estimated as subjects freely explored linear gratings with either the bare finger or a rigid stylus-shaped probe. A considerably expanded range of ridge and groove width was investigated, relative to the extant literature. The four experiments collectively indicate that, for both finger and probe-end effectors, the variance in the estimates of perceived roughness was predominantly predicted by a single parameter: groove width. The functions relating perceived roughness to groove width increased over a narrow band relative to the full range of values, then flattened. These data have archival values for models of roughness perception involving both direct and indirect touch.  相似文献   

6.
Kitada R  Sadato N  Lederman SJ 《Perception》2012,41(2):204-220
Rigid surfaces consisting of spatially jittered 2-D raised-dot patterns with different inter-element spacings were moved back and forth across the skin at three different speeds (10-fold range). Within each psychophysical experiment, participants numerically estimated the perceived magnitude of either unpleasantness (nonpainful) or roughness of 2-D raised-dot surfaces applied to two stationary body sites (experiment 1: fingers; experiment 2: forearm). The psychophysical functions for the two types of perceptual judgment were highly similar at both body loci; more specifically, the perceived magnitude of unpleasantness and roughness both increased monotonically as a power function of increasing inter-element spacing, with the rate of growth declining at the upper end of the continuum. These results suggest that inter-element spacing is a critical determinant of the perceived magnitude of unpleasantness (nonpainful), as well as of roughness. Each perceptual judgment also increased as a function of increasing relative speed at both body loci. However, the magnitude of this effect was significantly greater for perceived unpleasantness than for perceived roughness; conversely, the speed effect was significantly greater on the forearm than on the fingers. Several possible explanations for these findings are considered.  相似文献   

7.
In this paper, we show that, when lifting an object using a precision grip with the distal pads of the thumb and index finger at its sides, the perceived weight depends on the object’s surface texture. The smoother the surface texture, the greater the perceived weight. We suggest that a smoother object is judged to be heavier because the grip force, normal to the surface, required to prevent it from slipping is greater. The possibility of there being an influence of surface texture per se is excluded by a second experiment that employed a variant of the precision grip in which the thumb supports the weight of the object from underneath. With the grip oriented in this way, there is no need to match grip force to surface texture and, under these conditions, there is no effect of surface texture on weight perception. In the first two experiments, the test and comparison weights were lifted successively by the same hand. In a third experiment, the effect of surface texture was replicated for sequential lifts made with separate hands. Thus, the effect is not restricted to comparisons made with the same hand.  相似文献   

8.
This study examined the control of force and timing during finger tapping sequences of adolescents with Down syndrome. Participants performed both unimanual and bimanual tapping tasks with one self-paced test trial after three audible-synchronized practice trials with concurrent feedback of force output. All tasks consisted of a target force of 2N and a target intertap interval of 500 msec. Adolescents with Down syndrome exhibited a greater magnitude of positive constant error and variable error for peak force than typical adolescents. They also exhibited a greater magnitude of negative constant error and variable error for intertap interval than typical adolescents. Although normally developing comparison adolescents exhibited a linear relationship between peak force and press duration or time-to-peak force, the relationship was not familiar to adolescents with Down's syndrome. This may suggest differences in the manner of motor unit recruitment between the group with Down's syndrome and comparison adolescents.  相似文献   

9.
In this paper, we report the results from two experiments in which subjects were required to discriminate horizontal load forces applied to a manipulandum held with a precision grip. The roughness (and hence friction) of the grip surfaces and required grip force were manipulated. In the first experiment, subjects were instructed to judge the load while maintaining hand position and not letting the manipulandum slip. It was found that performance was influenced by surface texture; a given load was judged to be greater when the surface texture was smooth than when it was rough. This result is consistent with a previous study based on lifting objects and indicates that the effect of surface texture applies to loads in general and not just to gravitational loads (i.e., weight). To test whether the load acting on a smooth object is judged to be greater because the grip force required to prevent it from slipping is larger, a second experiment was carried out. Subjects used a visual feedback display to maintain the same grip force for smooth and rough manipulandum surfaces. In this case, there was no effect of surface texture on load perception. These results provide evidence that perceived load depends on the grip force used to resist the load. The implications of these results in terms of central and peripheral factors underlying load discrimination are considered.  相似文献   

10.
Katz (1925) has argued that the sense of vibration underlies the tactual perception of roughness. However, Taylor and Lederman (1975) have suggested that vibration serves only to prevent the cessation of mechanoreceptor activity. In an experimental evaluation of these positions, it is shown that, although prior (selective) adaptation of the fingertip strongly affects the perceived magnitude of supraliminal vibrotactile signals, it fails to alter the perceived roughness of metal gratings. The results thus favor the Taylor and Lederman position. The paper also speculates on roughness coding by the mechanoreceptor populations present in glabrous skin of the human hand.  相似文献   

11.
This study aimed to continue our characterization of finger strength and multi-finger interactions across the lifespan to include those in their 60s and older. Building on our previous study of children, we examined young and elderly adults during isometric finger flexion and extension tasks. Sixteen young and 16 elderly, gender-matched participants produced maximum force using either a single finger or all four fingers in flexion and extension. The maximum voluntary finger force (MVF), the percentage contributions of individual finger forces to the sum of individual finger forces during four-finger MVF task (force sharing), and the non-task finger forces during a task finger MVF task (force enslaving), were computed as dependent variables. Force enslaving during finger extension was greater than during flexion in both young and elderly groups. The flexion-extension difference was greater in the elderly than the young adult group. The greater independency in flexion may result from more frequent use of finger flexion in everyday manipulation tasks. The non-task fingers closer to a task finger produced greater enslaving force than non-task fingers farther from the task finger. The force sharing pattern was not different between age groups. Our findings suggest that finger strength decreases over the aging process, finger independency for flexion increases throughout development, and force sharing pattern remains constant across the lifespan.  相似文献   

12.
Previous experimental data on the roughness of grooved aluminum tiles provide a data base against which to test theories of roughness perception. A model based on the static deformation of the skin touching the stimulus tile is developed, and 11 parameters of the deformation are individually compared with the experimental data. All parameters were tested first in an approximate way, and then the better parameters were recalculated in a more exact manner. Three parameters, the depth to which the finger penetrates the groove, the cross-sectional area of the finger within the groove, and the cross-sectional area of the deviation of the skin from its resting position, all predict the roughness well as a function of finger force and groove width. The last of the three predicts roughness best as a function of land width, and is tentatively preferred as “the stimulus for roughness.” All predictions from the static model indicate that variation of the coefficient of friction between skin and tile should have little or no effect. This counterintuitive prediction was confirmed by an experiment.  相似文献   

13.
It has previously been shown that the perceived roughness of a surface touched by one digit is influenced by the roughness of a different surface touched simultaneously by another digit on the same hand. The present study was designed to examine whether this is the case when surfaces of varying roughness are touched using digits on separate hands. Participants touched pairs of sandpaper surfaces, in sequence, using the same digit, and identified which of the two was rougher. Roughness discrimination was measured in the presence of distractor surfaces touched simultaneously with the target surface, but using a different digit either on the same or on the other hand. The overall perception of roughness of the attended surfaces was better on the left than on the right hand. Perceived roughness also varied systematically with the roughness of the distractor surfaces. Attended surfaces were more likely to be perceived as smoother when they were paired with smooth rather than rough distractors. Likewise, attended surfaces tended to be perceived as rougher with rough distractors. This pattern of results occurred whether the attended and distractor digits were on the same hand or different hands. These data confirm that it is difficult to restrict tactile attention for roughness to a single digit and show that this difficulty extends to restricting attention to a single hand. Furthermore, the effect of a stimulus at an unattended body location was not simply to impair perception in general, but to bias it in the roughness direction of the distractor surface.  相似文献   

14.
Relations among finger forces were studied during one-hand and two-hand isometric maximal force production tasks in right- and left-handers. We particularly focused on the phenomena of force deficit during one-hand multi-finger tasks and of bilateral force deficit during two-hand tasks. Ten healthy subjects (five of them left-handed) performed maximal voluntary force production tasks with different finger combinations involving fingers of one of the hands or of both hands together. In one-hand tasks, finger enslaving (forces produced by fingers that were not instructed to produce force) was larger in the dominant hand, while force deficit (drop in individual finger peak force during multi-finger tasks) showed no differences between the hands. An additional drop in finger forces was seen in two-hand tests (bilateral deficit). The magnitude of the bilateral deficit for a hand was larger for tasks involving fewer fingers within the hand and more fingers in the other hand, with a ceiling effect. Smaller bilateral deficit was seen in tasks involving symmetrical finger combinations. In two-hand tasks that could potentially lead to the generation of large total moments in the frontal plane, the hand that was expected to generate larger moments showed larger bilateral deficit, so that the magnitude of the total moment was reduced. These observations suggest that force deficit within a hand and bilateral deficit have different origins but their effects are combined at a certain level of the multi-finger control hierarchy. Bilateral deficit may display task dependence reflecting, in particular, the principle of minimization of secondary moments. A double-representation, mirror-image hypothesis is suggested to provide a neurophysiological basis for the observed patterns of bilateral deficit.  相似文献   

15.
We explored the phenomenon of unintentional finger force drift by using visual feedback on the force produced either by explicitly instructed (master) finger pairs or by non-instructed (enslaved) finger pairs. In particular, we drew contrasting predictions from two hypotheses: that force drifts represented consequences of drifts in effector referent coordinates at the level of individual fingers vs. at the level of finger modes (hypothetical variables accounting for the finger force interdependence). Subjects performed accurate force production with two fingers of a hand, index-ring or middle-little. They received visual feedback on the force produced either by the master fingers or by the other two, enslaved, fingers. The feedback scale was adjusted to ensure that the subjects did not know the difference between these two, randomly presented, conditions. Under feedback on the master finger force, enslaved force showed a consistent drift upward. Under feedback on the enslaved finger force, master force showed a consistent drift downward. The subjects were unaware of the force drifts, which could reach over 35% of the initial force magnitude. The data support the hypothesis on drifts in the referent coordinate at the level of individual digits, not finger modes, as the origin of unintentional force drifts. The consistent increase in the relative amount of force produced by the enslaved fingers suggests that the commonly used methods to quantify enslaving should include relatively brief force production tasks.  相似文献   

16.
Psychophysical functions for perceived roughness, relating ln (magnitude estimate of roughness) to ln (groove width), were obtained for blind and sighted participants in virtual reality using the PHANToM force feedback device. The stimuli were sinusoidal surfaces with groove widths between 0.675 mm and 20.700 mm. Group functions showed a similar nonlinearity to those obtained in physical reality using rigid probes (Klatzky, Lederman, Hamilton, Grindley, & Swendsen, 2003; Lederman, Klatzky, Hamilton, & Ramsay, 1999). Individual functions gave a different picture. Of 23 total participants, there were 13 with wholly descending linear psychometric functions, 7 with quadratic functions similar to the group function, and 3 with anomalous functions. Individual power law exponents showed no significant effects of visual status. All analyses gave a power law exponent close to -0.80. The implications for theories of roughness, methodologies of data analysis, and the design of haptic virtual reality interfaces are considered.  相似文献   

17.
Pacinian representations of fine surface texture   总被引:1,自引:0,他引:1  
Subjects were presented with pairs of finely textured stimuli and were instructed to rate their dissimilarity, using free magnitude estimation. The subjects also rated the stimuli along each of four textural continua: roughness, hardness, stickiness, and warmth. In subsequent experimental sessions, we used a Hall effect transducer to measure the vibrations produced in the subjects' fingertip skin as the stimuli were scanned across it. We wished to assess the extent to which the perceptual dissimilarity of the textures could be explained in terms of the perceptual dissimilarity of the vibrations they elicited in the skin. To that end, we invoked a model characterizing the Pacinian representation of a vibratory stimulus. From the model, we computed the difference in the vibratory representations of the two stimuli in each pair. We found that the bulk of the variance in perceived dissimilarity of the textures was accounted for by differences in the Pacinian representations of the vibrations they produced. Our results further suggested that the textural information conveyed by the Pacinian system concerns surface roughness and, possibly, stickiness.  相似文献   

18.
Canonical finger postures, as used in counting, activate number knowledge, but the exact mechanism for this priming effect is unclear. Here we dissociated effects of visual versus motor priming of number concepts. In Experiment 1, participants were exposed either to pictures of canonical finger postures (visual priming) or actively produced the same finger postures (motor priming) and then used foot responses to rapidly classify auditory numbers (targets) as smaller or larger than 5. Classification times revealed that manually adopted but not visually perceived postures primed magnitude classifications. Experiment 2 obtained motor priming of number processing through finger postures also with vocal responses. Priming only occurred through canonical and not through non-canonical finger postures. Together, these results provide clear evidence for motor priming of number knowledge. Relative contributions of vision and action for embodied numerical cognition and the importance of canonicity of postures are discussed.  相似文献   

19.
This study investigated motor responses of force release during isometric elbow flexion by comparing effects of different ramp durations and step-down magnitudes. Twelve right-handed participants (age: 23.1 ± 1.1) performed trajectory tracking tasks. Participants were instructed to release their force from the reference magnitude (REF; 40% of maximal voluntary contraction force) to a step-down magnitude of 67% REF or 33% REF and maintain the released magnitude. Force release was guided by ramp durations of either 1 s or 5 s. Electromyography of the biceps brachii and triceps brachii was performed during the experimental task, and the co-contraction ratio was evaluated. Force output was recorded to evaluate the parameters of motor performance, such as force variability and overshoot ratio. Although a longer ramp duration of 5 s decreased the force variability and overshoot ratio than did shorter ramp duration of 1 s, higher perceived exertion and co-contraction ratio were followed. Force variability was greater when force was released to the step-down magnitude of 33% REF than that when the magnitude was 67% REF, however, the overshoot ratio showed opposite results. This study provided evidence proving that motor control strategies adopted for force release were affected by both duration and step-down magnitude. In particular, it implies that different control strategies are required according to the level of step-down magnitude with a relatively short ramp duration.  相似文献   

20.
In this study we investigated motor variability in individuals who showed (responders) and who did not show (non-responders) a behavioural phenomenon termed repeated bout rate enhancement. The phenomenon is characterized by an increase of the freely chosen index finger tapping rate during the second of two consecutive tapping bouts. It was hypothesized that responders would perform (i) tapping with a lower magnitude, but more complex structure of variability than non-responders and (ii) bout 2 with a lower magnitude and increased complexity of variability than bout 1, as opposed to non-responders. Individuals (n = 102) performed two 3-min tapping bouts separated by 10 min rest. Kinetic and kinematic recordings were performed. Standard deviation (SD), coefficient of variation (CV), and sample entropy (SaEn), representing magnitude and complexity of variability, were computed. For responders, SaEn of vertical displacement of the index finger was higher than for non-responders (p = .046). Further, SaEn of vertical force and vertical displacement was higher in bout 2 than in bout 1 for responders (p < .001 and p = .006, respectively). In general, SD of vertical displacement was lower in bout 2 than in bout 1 (p < .001). SaEn of vertical force was higher in bout 2 than in bout 1 (p = .009). The present lower SD and higher SaEn values of vertical force and displacement time series in bout 2 as compared to bout 1 suggest differences in the dynamics of finger tapping. Further, it is possible that the increases in SaEn of vertical displacement reflected a greater adaptability in the dynamics of motor control among responders compared with non-responders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号