首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adults are able to use a visual target to reduce quiet-standing postural sway (Lee & Lishman, 1975). The present study was designed to determine whether children, under varying postural conditions, are also able to use a visual target to reduce postural sway. A second purpose was to determine the ability of children to visually fixate under different postural conditions. An inability to visually fixate may limit the usefulness of a visual target. The results indicate that, like adults, children are able to reduce sway in the presence of a visual target. Young children are less able than older children and adults to visually fixate. In addition, children show more spontaneous visual saccades in the no-target condition than in the target condition and more saccades in the Romberg stance than in a feet-together stance. The fact that saccades decrease with increasing age, even in the seated, head-stabilized condition, precludes the possibility that increased instability of the young children is the only cause of increased number of saccades.  相似文献   

2.
ABSTRACT

The image on our retina changes every time we make an eye movement. To maintain visual stability after saccades, specifically to locate visual targets, we may use nontarget objects as “landmarks”. In the current study, we compared how the presence of nontargets affects target localization after saccades and during sustained fixation. Participants fixated a target object, which either maintained its location on the screen (sustained-fixation trials), or displaced to trigger a saccade (saccade trials). After the target disappeared, participants reported the most recent target location with a mouse click. We found that the presence of nontargets decreased response error magnitude and variability. However, this nontarget facilitation effect was not larger for saccade trials than sustained-fixation trials, indicating that nontarget facilitation might be a general effect for target localization, rather than of particular importance to post-saccadic stability. Additionally, participants’ responses were biased towards the nontarget locations, particularly when the nontarget-target relationships were preserved in relative coordinates across the saccade. This nontarget bias interacted with biases from other spatial references, e.g., eye movement paths, possibly in a way that emphasized non-redundant information. In summary, the presence of nontargets is one of several sources of reference that combine to influence (both facilitate and bias) target localization.  相似文献   

3.
Express saccades are visually-guided saccades that are characterized by an extremely short latency of about 100 ms. The present experiments tested the hypothesis that a disengagement of visual attention is necessary for the generation of express saccades. All subjects produced large numbers of express saccades in the gap paradigm, in which the fixation stimulus is removed 200 ms before target onset (Exp. 1), but not in the overlap paradigm, in which the fixation stimulus remains on during the entire trial (Exp. 2). By means of peripheral cues (Exps. 3–5) and central cues (Exps. 6–7), visual attention was directed at the target location for the saccade before the actual appearance of the saccade target. In all experiments, the location cues facilitated rather than abolished express saccades. The generation of express saccades was facilitated even when the currently fixated visual stimulus was not removed before target onset (fixation-overlap; Exps. 5–7). The results are explained by the hypothesis that a disengagement of a separate fixation system is necessary for the generation of express saccades, a hypothesis that is in line with current neurobiological findings.  相似文献   

4.
The unfavorable comparison between the obtained and expected outcomes of our choices may elicit disappointment. When the comparison is made with the outcome of alternative actions, emotions like regret can serve as a learning signal. Previous work showed that both anticipated disappointment and regret influence decisions. In addition, experienced regret is associated with higher emotional responses than disappointment. Yet it is not clear whether this amplification is due to additive effects of disappointment and regret when the outcomes of alternative actions are available, or whether it reflects the learning feature of regret signals. In this perspective, we used eye‐tracking to measure the visual pattern of information acquisition in a probabilistic lottery task. In the partial feedback condition, only the outcome of the chosen lottery was revealed, while in the complete feedback condition, participants could compare their outcome with that of the non‐chosen lottery, giving them the opportunity to experience regret. During the decision phase, visual patterns of information acquisition were consistent with the assessment of anticipated regret, in addition to a clear assessment of lotteries' expected values. During the feedback phase, subjective ratings and eye‐tracking results confirmed that participants compared their outcome with the outcome of the non‐chosen lottery in the complete feedback condition, particularly after a loss, and ignored the non‐realized outcome of the chosen option. Moreover, participants who made more visual saccades consistent with counterfactual comparisons during the feedback period anticipated regret more in their decisions. These results are consistent with the proposed adaptive function of regret. © 2016 The Authors Journal of Behavioral Decision Making Published by John Wiley & Sons Ltd.  相似文献   

5.
Age-group differences were examined in the delayed oculomotor response task, which requires that observers delay the execution of a saccade (eye movement) toward an abrupt-onset visual cue. This task differs from antisaccade and attentional capture in that inhibition causes saccades to be postponed, not redirected. Older adults executed more premature saccades than young adults, but there were no age-group differences in latency or accuracy of saccades executed at the proper time. The results suggest that older adults are less capable of inhibiting a prepotent saccadic response, but that other aspects of visual working memory related to the task are preserved.  相似文献   

6.
ABSTRACT

Age-group differences were examined in the delayed oculomotor response task, which requires that observers delay the execution of a saccade (eye movement) toward an abrupt-onset visual cue. This task differs from antisaccade and attentional capture in that inhibition causes saccades to be postponed, not redirected. Older adults executed more premature saccades than young adults, but there were no age-group differences in latency or accuracy of saccades executed at the proper time. The results suggest that older adults are less capable of inhibiting a prepotent saccadic response, but that other aspects of visual working memory related to the task are preserved.  相似文献   

7.
Abstract— Saccadic eye movements are made at least 100,000 times each day It is well known that sensitivity to visual input is suppressed during saccades, we examined whether cognitive activity (specifically, menial rotation) is suppressed as well If cognitive processing occurs during saccades, a prime viewed in one fixation should exert a larger influence on a target viewed in a second fixation when a long rather than a short saccade separates their viewing No such effect was found, even though the lime difference between long and short saccades was effective in a no-saccade control These results indicate that at least some cognitive operations are suppressed during saccades  相似文献   

8.
Three experiments investigating the basis of induced motion are reported. The proposition that induced motion is based on the visual capture of eye-position information and is therefore a subject-relative, rather than object-relative, motion was explored in the first experiment. Observers made saccades to an invisible auditory stimulus following fixation on a stationary stimulus in which motion was induced. In the remaining two experiments, the question of whether perceived induced motion produces a straight ahead shift was explored. The critical eye movement was directed to apparent straight ahead. Because these saccades partially compensated for the apparent displacement of the induction stimulus, and saccades to the auditory stimulus did not, we conclude that induced motion is not based on oculomotor visual capture. Rather, it is accompanied by a shift in the judged direction of straight ahead, an instance of the straight ahead shift. The results support an object-relative theory of induced motion.  相似文献   

9.
The visual world appears stable despite frequent retinal image movements caused by saccades. Many theories of visual stability assume that extraretinal eye position information is used to spatially adjust perceived locations across saccades, whereas others have proposed that visual stability depends upon coding of the relative positions of objects. McConkie and Currie (1996) proposed a refined combination of these views (called the Saccade Target Object Theory) in which the perception of stability across saccades relies on a local evaluation process centred on the saccade target object rather than on a remapping of the entire scene, with some contribution from memory for the relative positions of objects as well. Three experiments investigated the saccade target object theory, along with an alternative hypothesis that proposes that multiple objects are updated across saccades, but with variable resolution, with the saccade target object (by virtue of being the focus of attention before the saccade and residing near the fovea after the saccade) having priority in the perception of displacement. Although support was found for the saccade target object theory in Experiment 1, the results of Experiments 2 and 3 found that multiple objects are updated across saccades and that their positions are evaluated to determine perceived stability. There is an advantage for detecting displacements of the saccade target, most likely because of visual acuity or attentional focus being better near the fovea, but it is not the saccade target alone that determines the perception of stability and of displacements across saccades. Rather, multiple sources of information appear to contribute.  相似文献   

10.
本研究探讨了观察者与观察目标存在相对运动时视觉系统对目标数量特征的适应后效的皮层映射特征, 并与对比度适应后效的映射规律进行比较。包括两项实验。其中, 实验一要求被试在适应目标后转换注视点, 考察眼跳后相同和不同视网膜区域以及相同和不同空间区域的适应后效, 发现数量适应后效具有部分空间-皮层映射特性, 而对比度适应后效则表现出完全的视网膜-皮层映射特征。实验二采用固定的注视点, 考察目标运动后目标原位置和新位置区域的适应后效, 发现数量适应后效不完全依赖于视网膜-皮层映射, 它可以“追随”客体运动重新映射到新的位置, 表现出基于客体映射的特征, 而对比度适应后效则完全依赖于视网膜-皮层映射, 不能“追随”客体移动在目标新位置重新形成映射。两项实验结果提示, 相对于对比度等低级表面特征而言, 数量特征对目标的描述涉及更高的加工水平, 它可以与观察目标的相对运动信息进行整合, 且这种整合在眼跳和非眼跳的观察条件下都可发生。  相似文献   

11.
Threatening stimuli are known to influence attentional and visual processes in order to prioritize selection. For example, previous research showed faster detection of threatening relative to nonthreatening stimuli. This has led to the proposal that threatening stimuli are prioritized automatically via a rapid subcortical route. However, in most studies, the threatening stimulus is always to some extent task relevant. Therefore, it is still unclear if threatening stimuli are automatically prioritized by the visual system. We used the additional singleton paradigm with task-irrelevant fear-conditioned distractors (CS+ and CS-) and indexed the time course of eye movement behavior. The results demonstrate automatic prioritization of threat. First, mean latency of saccades directed to the neutral target was increased in the presence of a threatening (CS+) relative to a nonthreatening distractor (CS-), indicating exogenous attentional capture and delayed disengagement of covert attention. Second, more error saccades were directed to the threatening than to the nonthreatening distractor, indicating a modulation of automatically driven saccades. Nevertheless, cumulative distributions of the saccade latencies showed no modulation of threat for the fastest goal-driven saccades, and threat did not affect the latency of the error saccades to the distractors. Together these results suggest that threatening stimuli are automatically prioritized in attentional and visual selection but not via faster processing. Rather, we suggest that prioritization results from an enhanced representation of the threatening stimulus in the oculomotor system, which drives attentional and visual selection. The current findings are interpreted in terms of a neurobiological model of saccade programming.  相似文献   

12.
The latency of saccadic movements to targets appearing at various positions in three-dimensional visual space was measured in four experiments. The first experiment confirmed that latencies of saccades to visual targets are greater in the lower visual field and showed that the increase is not influenced by the vertical starting position of the eye in the orbit, nor by a time gap between the fixation offset and the target onset. A hypothesis that this visual field difference was caused by a link between downward saccades and convergence movements was tested by recording saccade latencies when the targets were in a different depth plane from that of the original fixation. We did not find any direct support for the vergence involvement hypothesis, although the lower/upper visual field effect was shown to decrease consistently in monocular viewing. It was also shown that saccades to targets positioned in a different depth plane have longer latencies. In a final experiment, the visual field effect was shown to depend on the egocentric rather than the gravitational vertical.  相似文献   

13.
The latency of saccadic movements to targets appearing at various positions in three-dimensional visual space was measured in four experiments. The first experiment confirmed that latencies of saccades to visual targets are greater in the lower visual field and showed that the increase is not influenced by the vertical starting position of the eye in the orbit, nor by a time gap between the fixation offset and the target onset. A hypothesis that this visual field difference was caused by a link between downward saccades and convergence movements was tested by recording saccade latencies when the targets were in a different depth plane from that of the original fixation. We did not find any direct support for the vergence involvement hypothesis, although the lower/upper visual field effect was shown to decrease consistently in monocular viewing. It was also shown that saccades to targets positioned in a different depth plane have longer latencies. In a final experiment, the visual field effect was shown to depend on the egocentric rather than the gravitational vertical.  相似文献   

14.
Visual–spatial attention can be biased towards salient visual information without visual awareness. It is unclear, however, whether such bias can further influence free-choices such as saccades in a free viewing task. In our experiment, we presented visual cues below awareness threshold immediately before people made free saccades. Our results showed that masked cues could influence the direction and latency of the first free saccade, suggesting that salient visual information can unconsciously influence free actions.  相似文献   

15.
Summary Neurophysiological data from single cells in the monkey's visual association cortex as well as saccadic reaction time measurements in monkey and man are reported. When a monkey directs his attention to a peripheral light stimulus the visual activation of cortical cells responsive to that stimulus is increased. If visual attention is directed to a particular part of the visual field the saccadic reaction time is long (around 200 ms in monkey and above 200 ms in man). In contrast, if attention is disengaged from any location to which it might have been engaged before, monkeys and men can execute express saccades, that is, saccades after extremely short and stable reaction times (around 75 ms in monkey and 100 ms in man). The results are interpreted in the context of a hypothesis according to which the initiation of voluntary, visually guided saccades includes three premotor mechanisms: the computation of the target location, the decision to make a saccade, and the disengagement of attention.  相似文献   

16.
Subjects produced saccades to continuously visible targets that were signaled by the pitch, not the location, of an auditory signal. Such endogenous saccades were initiated more quickly when the visual fixation point disappeared 200 msec before the signal (thus producing a “gap”), even though the alerting benefits of such a warning were eliminated by an earlier warning tone. The presence of the gap effect under these circumstances shows that the effect is more general than was previously believed: Visual fixation point offsets facilitate saccades by affecting oculomotor processes related to both visually elicited (exogenous) and centrally produced (endogenous) saccades. In addition, the magnitude of the gap effect for endogenous saccades was significantly smaller than that for exogenous saccades, suggesting that at least some of the effect arises in relatively early processes, such as those involved in the processing of sensory signals, and not exclusively in later processes, such as those involved in the preparation and production of saccades.  相似文献   

17.
Visual search is modulated by action intentions   总被引:3,自引:1,他引:2  
The influence of action intentions on visual selection processes was investigated in a visual search paradigm. A predefined target object with a certain orientation and color was presented among distractors, and subjects had to either look and point at the target or look at and grasp the target. Target selection processes prior to the first saccadic eye movement were modulated by the different action intentions. Specifically, fewer saccades to objects with the wrong orientation were made in the grasping condition than in the pointing condition, whereas the number of saccades to an object with the wrong color was the same in the two conditions. Saccadic latencies were similar under the different task conditions, so the results cannot be explained by a speed-accuracy trade-off. The results suggest that a specific action intention, such as grasping, can enhance visual processing of action-relevant features, such as orientation. Together, the findings support the view that visual attention can be best understood as a selection-for-action mechanism.  相似文献   

18.
The bimanual coupling literature supposes an inherent drive for synchrony between the upper limbs when making discrete bimanual movements. The level of synchrony is argued to be task dependent, reliant on the visual demands of the two targets, and the result of a complex pattern of hand and eye movements (Bingham, Hughes, & Mon-Williams, 2008 ; Riek, Tresilian, Mon-Williams, Coppard, & Carson, 2003 ). However, recent work by Bruyn and Mason ( 2009 ) suggests that temporal coordination is not solely influenced by visual saccades. In this experimental series, a total of 8 participants performed congruent movements to targets either near or far from the midline. Targets far from the midline, requiring a visual saccade, resulted in greater terminal asynchrony. Initial and terminal asynchrony were not consistent, but linked to the task demands at that stage of the movement. If the asynchrony evident at the end of a bimanual movement is due to a complex pattern of hand and eye movements then the removal of visual feedback should result in an increase in synchrony. Sixteen participants then completed congruent and incongruent bimanual aiming movements to near and/or far targets. Movements were made with or without visual feedback of hands and targets. Analyses revealed that movements made without visual feedback showed increased synchrony between the limbs, yet movements to incongruent targets still showed greater asynchrony. We suggest that visual constraints are not the sole cause of asynchrony in discrete bimanual movements.  相似文献   

19.
Visual masking effects on test flash thresholds were measured under real and simulated eye movement conditions to determine whether visual masking is primarily responsible for elevations in threshold that are sometimes associated with saccadic eye movements. Brief luminous flashes presented to the central retina before, during, and after saccades were masked by stimuli presented either pre- or postsaccadically. The amount and time course of masking were quantitatively dependent on stimulus parameters of intensity and temporal separation and were unaffected by eye movement parameters (amplitude, velocity, direction) as long as retinal stimulus conditions were constant. The duration of forward masking was longer than that of backward masking. When retinal conditions during saccades were mimicked while the eyes were held steady, masking interactions were identical to those obtained during real saccades. These results indicate that masking effects during saccades in ordinary environments are determined solely by the stimulus situation at the retina. Putative nonvisual, centrally originating saccadic suppression suggested by other authors is evidently not additive with visually determined masking during saccades.  相似文献   

20.
Saccades operate a continuous selection between competing targets at different locations. This competition has been mostly investigated in the visual context, and it is well known that a visual distractor can interfere with a saccade toward a visual target. Here, we investigated whether multimodal, audio-visual targets confer stronger resilience against visual distraction. Saccades to audio-visual targets had shorter latencies than saccades to unisensory stimuli. This facilitation exceeded the level that could be explained by simple probability summation, indicating that multisensory integration had occurred. The magnitude of inhibition induced by a visual distractor was comparable for saccades to unisensory and multisensory targets, but the duration of the inhibition was shorter for multimodal targets. We conclude that multisensory integration can allow a saccade plan to be reestablished more rapidly following saccadic inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号