首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A number of methodological features were incorporated in a paradigm designed to maximize the likelihood of finding reliable event-related potential (ERP) signs of functional specializations between and within the cerebral hemispheres. Every subject was more accurate in identifying words presented to the right than to the left visual field. The morphology of the ERPs elicited by these words varied considerably as a function of electrode position both within and between the hemispheres. Amplitude asymmetries of ERP components recorded from occipital regions of the two hemispheres varied systematically with the position of the word in the visual field. On the other hand, ERPs from more anterior (temporal and frontal) regions displayed large asymmetries which were in the same direction regardless of the visual field of word presentation. The most prominent such asymmetry was in the negativity in the region 300–500 msec (N410) which was larger in the left than the right hemisphere in every subject. These results demonstrate that in this paradigm which demands specialized language processing ERPs are sensitive to aspects of cerebral organization both within and between the two hemispheres.  相似文献   

2.
Event-related potentials (ERPs) were used as the dependent measure in a divided visual field study examining the processing of lexically ambiguous words in the cerebral hemispheres. The goal was to determine if the N400 ERP component is sensitive measure of hemispheric differences in semantic processing. ERP waveforms were examined for lateralized target words that were related to either the dominant (MONEY) or subordinate (RIVER) meanings of ambiguous words (BANK). These waveforms were compared to trials where the prime-target pairs were unrelated. Reliable N400s, reflecting a significant difference between related and unrelated trials, were seen when targets were presented to the right visual field/left hemisphere. However, there were no N400s observed for either the dominant or subordinate conditions when targets were presented to the left visual field/right hemisphere.  相似文献   

3.
Healthy subjects performed a lexical decision task in a semantic priming paradigm while event-related potentials (ERPs) were recorded from 64 channels. Semantic distance between prime and target was varied by including directly, indirectly, and nonrelated word pairs. At centro-parietal electrodes an N400 to nonrelated pairs was elicited bilaterally which was sensitive only to direct, but not to indirect semantic priming. These N400 priming effects were mirrored by the RT data. At inferior fronto-temporal sites directly related words showed ERP priming effects over both hemispheres. However, indirectly related words only elicited ERP priming effects over the right hemisphere. These results support the hypothesis that the right hemisphere semantic system is involved in processing of remote semantic information.  相似文献   

4.
Two experiments explored repetition priming benefits in the left and right cerebral hemispheres. In both experiments, a lateralized lexical decision task was employed using repeated target stimuli. In the first experiment, all targets were repeated in the same visual field, and in the second experiment the visual field of presentation was switched following repetition. Both experiments demonstrated hemispheric specialization for the task (a RVF advantage for word identification) and hemispheric interaction for word processing (lexicality priming from contralateral distracters). In the first experiment, words were identified more quickly and accurately following repetition, with repetition facilitating faster but fewer correct responses for non-words. Complex interactions between visual field of first and second presentation in the second experiment indicate asymmetric interhemispheric repetition priming effects. These results provide a broad picture of hemispheric asymmetries in word processing and of complex interaction between the hemispheres during word recognition.  相似文献   

5.
Perceptual asymmetries have been explained by structural, attentional bias and attentional advantage models. Structural models focus on asymmetries in the physical access information has to the hemispheres, whereas attentional models focus on asymmetries in the operation of attentional processes. A series of experiments was conducted to assess the contribution of attentional mechanisms to the right visual field (RVF) advantage found for word recognition. Valid, invalid and neutral peripheral cues were presented at a variety of stimulus onset asynchronies to manipulate spatial attention. Results indicated a significant RVF advantage and cueing effect. The effect of the cue was stronger for the left visual field than the RVF. This interaction supports the attentional advantage model which suggests that the left hemisphere requires less attention to process words. The attentional asymmetry is interpreted in terms of the different word processing styles used by the left and right hemispheres. These results have ramifications for the methodology used in divided visual field research and the interpretation of this research.  相似文献   

6.
Voyer D 《Brain and language》2003,87(3):421-431
Three experiments investigated the role of the right cerebral hemisphere in the word frequency effect observed in visual word recognition. The experiments examined lexical decisions to low and high frequency words as well as non-words in a divided visual field paradigm. Experiment 1 showed a significant word frequency effect only for left visual field presentation. Experiment 2 provided a partial replication of the results of Experiment 1 with a different set of words. In Experiment 3, case alternation was implemented to investigate a possible explanation of the findings. Results of the first experiment were replicated in the condition without case alternation. In the case-alternated condition, the word frequency effect was significant only for right visual field presentations. The present findings emphasize the need to consider that information processing strategies relevant to hemispheric asymmetries might account in part for the word frequency effect.  相似文献   

7.
In the typical visual laterality experiment, words and letters are more rapidly and accurately identified in the right visual field than in the left. However, while such studies usually control fixation, the deployment of visual attention is rarely restricted. The present studies investigated the influence of visual attention on the visual field asymmetries normally observed in single-letter identification and lexical decision tasks. Attention was controlled using a peripheral cue that provided advance knowledge of the location of the forthcoming stimulus. The time period between the onset of the cue and the onset of the stimulus (Stimulus Onset Asynchrony—SOA) was varied, such that the time available for attention to focus upon the location was controlled. At short SO As a right visual field advantage for identifying single letters and for making lexical decisions was apparent. However, at longer SOAs letters and words presented in the two visual fields were identified equally well. It is concluded that visual field advantages arise from an interaction of attentional and structural factors and that the attentional component in visual field asymmetries must be controlled in order to approximate more closely a true assessment of the relative functional capabilities of the right and left cerebral hemispheres.  相似文献   

8.
In this article we examine whether the distribution of function across the right and left cerebral hemispheres for lexical processing is influenced by the global context within which words are presented. A review of previously published studies indicates that the ubiquitous right visual field (RVF)/left hemisphere advantage for word recognition may be reduced or eliminated for nouns, content words, or high image words, but only when such items are presented along with verbs, function words, or low image words. However, paradoxically, when the former items are presented in more homogeneous contexts, the RVF advantage is uniformly observed. We propose that the processing efficiency of a hemisphere for a given stimulus depends on that item's relation to the other stimuli provided, that is, the global context. This was examined in a visual half-field experiment that varied whether high and low image nouns were presented in homogeneous (blocked lists) or heterogeneous (mixed lists) contexts. An unvarying RVF advantage was observed for high image words in homogeneous contexts, but this advantage was eliminated when the same items were presented in heterogeneous contexts. We suggest that stimulus heterogeneity maximizes reliance on differing, but complementary, computational biases across hemispheres. Hence, the extent to which the left and right hemispheres are recruited for the recognition of individual word types can vary dynamically with variation in the stimulus environment.  相似文献   

9.
Alpha hemispheric asymmetries of nonstuttering males, nonstuttering females, and stuttering males were explored with electroencephalographic procedures during exposure to two lists of one-syllable words which the subjects were required to recall following presentation. One word list contained low-imagery words while the other contained high-imagery words. Stuttering males were found to have significantly less alpha in their right hemispheres, suggesting right hemispheric processing strategies. This finding was interpreted as supporting the “segmentation dysfunction” explanation of stuttering suggested by Moore and Haynes (1979b). Nonstuttering males showed less left than right alpha while nonstuttering females revealed no difference between their right and left hemispheres. Differences between nonstuttering males and females are discussed as being task and stimuli dependent relative to the segmental/nonsegmental nature of both task and stimuli. Differential hemispheric asymmetries for words of high or low-imagery were not observed.  相似文献   

10.
Hemisphere differences in conscious and unconscious word reading   总被引:1,自引:0,他引:1  
Hemisphere differences in word reading were examined using explicit and implicit processing measures. In an inclusion task, which indexes both conscious (explicit) and unconscious (implicit) word reading processes, participants were briefly presented with a word in either the right or the left visual field and were asked to use this word to complete a three-letter word stem. In an exclusion task, which estimates unconscious word reading, participants completed the word stem with any word other than the prime word. Experiment 1 showed that words presented to either visual field were processed in very similar ways in both tasks, with the exception that words in the right visual field (left hemisphere) were more readily accessible for conscious report. Experiment 2 indicated that unconsciously processed words are shared between the hemispheres, as similar results were obtained when either the same or the opposite visual field received the word stem. Experiment 3 demonstrated that this sharing between hemispheres is cortically mediated by testing a split-brain patient. These results suggest that the left hemisphere advantage for word reading holds only for explicit measures; unconscious word reading is much more balanced between the hemispheres.  相似文献   

11.
In order to clarify the brain mechanisms involved in the recognition of faces, words, and figures, spatiotemporal analyses were carried out with event-related potentials (ERPs) and positron emission tomography (PET) in normal subjects. In the first experiment, we analyzed the ERPs of eight normal subjects under a passive habituation paradigm using pictures of faces and letters. In the second experiment, regional cerebral blood flow (rCBF) measured using PET was obtained simultaneously with the ERP recordings during a continuous performance task (CPT) in 12 normal subjects. This required the active discrimination of famous people's faces, meaningful words consisting of two Japanese hiragana characters, and simple geometric figures. There were similar deflections in the global field power (GFP) in the first 200 ms of the passive and active tasks, regardless of type of stimuli. This suggests a common time course in the visual information processing mechanisms during the preattentive stage. Mesiotemporal activity, dominant on the right, was seen during the face discrimination task in both the PET results and the ERP topographies. In the word task, activity that was clearly dominant on the left was observed at around a 160 ms latency in the posteriotemporal region of the ERP topography and this again coincided well with the PET data. The spatiotemporal resolution of the analyses was improved by combining PET and topographic ERP studies, and this provided additional neurophysiological information concerning cognitive processing.  相似文献   

12.
Discriminations were required between words, pseudohomophones, and visually matched nonwords. Two tasks were employed, one which could be accomplished on the basis of a visual code (the REAL task, involving discrimination between words and both types of nonword) and another necessitating the use of a phonological code (the REAL/PSEUD task, words and pseudohomophones vs. nonwords). ERPs were recorded from three midline sites and from left and right inferior parietal sites. Two principal results were observed, (i) the peak latency of a late positive component, P637, covaried with RT, with variations in latency of around one half the corresponding RT variations, and (ii) the peak-to-peak amplitude of N100-P187 interacted with stimulus and task, such that it was larger for nonwords in the REAL task and words in the REAL/PSEUD task. No taskor stimulus-dependent asymmetries were observed in any ERP component. The P637 latency data support a model of RT variation based on the interaction of changes in parallel response preparation and stimulus evaluation processes. The observations with respect to N100-P187 suggest that ERPs are sensitive to factors related to the early processing of words and word-like visual material.  相似文献   

13.
To investigate hemispheric differences in the timing of word priming, the modulation of event-related potentials by semantic word relationships was examined in each cerebral hemisphere. Primes and targets, either categorically (silk-wool) or associatively (needle-sewing) related, were presented to the left or right visual field in a go/no-go lexical decision task. The results revealed significant reaction-time and physiological differences in both visual fields only for associatively related word pairs, but an electrophysiological difference also tended to reach significance for categorically related words when presented in the left visual field. ERP waveforms showed a different time-course of associative priming effects according to the field of presentation. In the right visual field/left hemisphere, both N400 and Late Positive Component (LPC/P600) were modulated by semantic relatedness, while only a late effect was present in the left visual field/ right hemisphere.  相似文献   

14.
Although functional cerebral asymmetries (FCAs) affect all cognitive domains, their modulation of the efficacy of specific executive functions is largely unexplored. In the present study, we used a lateralized version of the task switching paradigm to investigate the relevance of hemispheric asymmetries for cognitive control processes. Words were tachistoscopically presented in the left (LVF) and right visual half field (RVF). Participants had to categorise the words either based on their initial letters, or according to their word type. On half of the trials the task changed (switch trials) whereas on the other half it stayed the same (repeat trials). ERPs were recorded and the neural sources of the ERPs were reconstructed using standardised low resolution brain electromagnetic tomography (sLORETA). In the word type task, participants were faster on repeat trials when stimuli were presented in the RVF. In contrast, in the initial letter task participants were faster on repeat trials and in general more accurate after stimulus presentation in the LVF. In both tasks, no hemispheric asymmetries in reaction times were observed on switch trials. On the electrophysiological level, we observed a left lateralization of the N1 that was mediated by activation in the left extrastriate cortex as well as a greater positivity of the P3b after stimulus presentation in the RVF compared to the LVF that was mediated by activation in the superior parietal cortex. These results show that FCAs affect the neurophysiological correlates of executive functions related to task switching. The relation of neurophysiological and behavioural asymmetries is mediated by task complexity, with more complex tasks leading to more interhemispheric interaction and smaller left-right differences in behavioural measures. These findings reveal that FCAs are an important modulator of executive functions related to cognitive flexibility.  相似文献   

15.
Researchers using lateralized stimuli have suggested that the left hemisphere is sensitive to sentence-level context, whereas the right hemisphere (RH) primarily processes word-level meaning. The authors investigated this message-blind RH model by measuring associative priming with event-related brain potentials (ERPs). For word pairs in isolation, associated words elicited more positive ERPs than unassociated words with similar magnitudes and onset latencies in both visual fields. Embedded in sentences, these same pairs showed large sentential context effects in both fields. Small effects of association were observed, confined to incongruous sentences after right visual hemifield presentation but present for both congruous and incongruous sentences after left visual hemifield presentation. Results do not support the message-blind RH model but do suggest hemispheric asymmetries in the use of word and sentence context during real-time processing.  相似文献   

16.
Single items such as objects, letters or words are often presented in the right or left visual field to examine hemispheric differences in cognitive processing. However, in everyday life, such items appear within a visual context or scene that affects how they are represented and selected for attention. Here we examine processing asymmetries for a visual target within a frame of other elements (scene). We are especially interested in whether the allocation of visual attention affects the asymmetries, and in whether attention-related asymmetries occur in scenes oriented out of alignment with the viewer. In Experiment 1, visual field asymmetries were affected by the validity of a spatial precue in an upright frame. In Experiment 2, the same pattern of asymmetries occurred within frames rotated 90 degrees on the screen. In Experiment 3, additional sources of the spatial asymmetries were explored. We conclude that several left/right processing asymmetries, including some associated with the deployment of spatial attention, can be organized within scenes, in the absence of differential direct access to the two hemispheres.  相似文献   

17.
Event-related potentials (ERPs) were recorded from one midline and three pairs of lateral electrodes while subjects determined whether a pair of sequentially presented pictures had rhyming or nonrhyming names. During the 1.56-sec interval between the two pictures, the slow ERP wave recorded over the left hemisphere was more negative-going than that over the right, especially at frontal electrodes. The ERPs evoked by the second picture differed as a function of whether its name rhymed with its predecessor. This difference, taking the form of increased negativity in ERPs to nonrhyming items, had an earlier onset and a greater magnitude at right than at left hemisphere electrodes. This pattern of ERP asymmetries is qualitatively similar to that found when words are rhyme-matched. It is therefore concluded that such asymmetries do not depend on the employment of orthographic material and may reflect some aspect(s) of the phonological processing of visually presented material.  相似文献   

18.
Visual field differences can arise from hemispheric specializations or perceptual asymmetries. Deciding which of the two is responsible for a particular visual field difference is a recurrent problem for researchers concerned with lateral asymmetries. In the present paper, the difficulties involved in interpreting visual field asymmetries are discussed as they apply to the Young and Ellis (1985) research on the interactive effects of word length and visual hemifield on the recognition of English words. We show that one of their critical results disappears when small changes are made to their experimental procedure. Our data demonstrate that the visual field differences Young and Ellis reported were the result of preceptual asymmetries rather than different methods of lexical access in the two cerebral hemispheres.  相似文献   

19.
We report a series of neural network models of semantic processing of single English words in the left and the right hemispheres of the brain. We implement the foveal splitting of the visual field and assess the influence of this splitting on a mapping from orthography to semantic representations in single word reading. The models were trained on English four-letter words, presented according to their frequency in all positions encountered during normal reading. The architecture of the model interacted with the training set to produce processing asymmetries comparable to those found in behavioral studies. First, the cueing effects of dominant and subordinate meanings of ambiguous words were different for words presented to the left or to the right of the input layer. Second, priming effects of groups of related words were stronger in the left input than the right input of the model. These effects were caused by coarser-coding in the right half compared with the left half of the model, an emergent effect of the split model interacting with informational asymmetries in the left and right parts of words in the lexicon of English. Some or all of the behavioral data for reading single words in English may have a similar origin.  相似文献   

20.
Both cerebral hemispheres contain phonological, orthographic and semantic representations of words, however there are between-hemisphere differences in the relative engagement and specialization of the different representations. Taking orthographic processing for example, previous studies suggest that orthographic neighbourhood size (N) has facilitatory effects in the right but not the left hemispheres. To pursue the nature of this asymmetric N effect, in particular whether there are individual differences in such specialisation, we examined N in a case of developmental dyslexia, FM. We first describe the nature of his difficulties, which are mainly severe phonological deficits. Employing the divided visual field paradigm with FM revealed a greater sensitivity in the right than in the left hemisphere to orthographic variables, with a significant inhibitory N effect in the left, but not right hemisphere. Such inhibition, to a lesser degree, was found among a group of adults with dyslexia but not among age-matched normal readers. We argue that enhanced sensitivity to orthographic cues is developed in some cases of dyslexia when a normal, phonology-based left hemisphere word recognition processing is not achieved. The interpretation presented here is cast in terms of differences between people with dyslexia and typical readers that originate in the atypical way in which orthographic representations are initially set up.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号