首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The interaction of opiate, cholinergic, glutamatergic and (possibly) dopaminergic inputs in the ventral tegmental area (VTA) influencing a learned behavior is certainly a topic of great interest. In the present study, the effect of intra-VTA administration of N-methyl-d-aspartate (NMDA) receptor agents on nicotine's effect in morphine state-dependent learning was investigated. An inhibitory avoidance (IA) task was used for memory assessment in male Wistar rats. Subcutaneous (s.c.) administration of morphine (5 and 7.5mg/kg) immediately after training decreased IA response on the test day, which was reinstated by pre-test administration of the same doses of the opioid; this is known as state-dependency. Moreover, pre-test administration of nicotine (0.2, 0.4 and 0.6 mg/kg, s.c.) also reversed the decrease in IA response because of post-training morphine (5mg/kg). Here, we also show that when infused into the VTA before testing, NMDA (0.01 and 0.1 microg/rat) reverse the post-training morphine effect on memory. In addition, the sub-effective doses of NMDA (0.0001 and 0.001 microg/rat) in combination with a low dose of nicotine (0.1mg/kg) which had no effects by themselves, synergistically improved retrieval of IA memory on the test day. In contrast, pre-test administration of a competitive NMDA receptor antagonist D-AP5 (0.5, 1 and 2 microg/rat) which had no effect alone prevented the nicotine reversal of morphine effect on memory. Our data indicate that NMDA receptors in the VTA are involved in the reversing effect of nicotine on morphine induced state-dependency.  相似文献   

2.
Male Wistar rats were exposed to one-trial step-down inhibitory avoidance training using a 0.5 mA footshock. Through bilaterally implanted indwelling cannulae, they received bilateral 0.5 microL infusions of saline, mecamylamine (1.0 or 10.0 microg/side), or nicotine (0.6 or 3.0 microg/side) into the basolateral complex of the amygdaloid nucleus (BLA). Infusions were either 10 min before training (Experiment 1) or 4 min after training (Experiment 2). In Experiment 1, the animals were tested three times: first for working memory (WM) 5 s after training, then for short-term memory (STM) 90 min later, and finally for long-term memory (LTM) 24 h later. Mecamylamine depressed and nicotine enhanced WM, STM, and LTM. In Experiment 2, the treatments were given after WM was presumably over. Again, mecamylamine inhibited and nicotine enhanced STM and LTM. The results indicate that nAChRs in BLA participate in the regulation of WM formation and STM and LTM acquisition and consolidation.  相似文献   

3.
The serotonin 5-HT4 subtype receptor is predominantly localized into anatomical structures linked to memory and cognition. A few experimental studies report that the acute systemic administration of selective 5-HT4 agonists has ameliorative effects on memory performance, and that these effects are reversed by contemporary administration of 5-HT4 receptor antagonists. To verify whether this procognitive action occurs via the activation of the cholinergic nucleus basalis magnocellularis (NBM)-cortical pathways, we examined the effects of RS67333, a selective partial agonist of the 5-HT4 receptor, on rat performance in a place recognition task upon local administration of the drug into the NBM area. The intra-NBM administration of RS67333 enhances the acquisition (200-500 ng/0.5 microL) and the consolidation (40-200 ng/0.5 microL) of the place recognition memory. These effects are reversed by pretreatment with the selective 5-HT4 receptor antagonist RS39604 (300 ng/0.5 microL). Conversely, the recall of memory is not affected by the 5-HT4 agonist. Our results indicate that 5-HT4 receptors located within the NBM may play a role in spatial memory and that the procognitive effect of RS67333 is due, at least in part, to the potentiation of the activity of cholinergic NBM-cortical pathways.  相似文献   

4.
Abstract

Variable practice promotes a higher level of motor learning than constant practice. The glutamate receptors, n-methyl-d-aspartate (NMDA) and alfa-amino-3-hydroxy-5-methyl-4-isoxazolepropionic (AMPA), have been associated with the changes in motor cortex that occur throughout the process of motor learning. Considering that, it is possible that variable practice is more associated with the NMDA and AMPA receptors than constant practice. This study aimed ao investigating the association between the glutamate receptors, NMDA and AMPA, and constant and variable practice schedules. Seventy-eight male mice practiced the rotarod task in a constant or variable scheduling, in two consecutive days (acquisition phase). Learning tests were performed 24?h and 10?days after the end of the acquisition phase. Variable practice was more associated with the NMDA receptor and had a greater AMPA receptor expression than constant practice. The results suggest that the benefits of variable practice are result of both the greater dependency on the NMDA receptor and the greater AMPA receptor expression.  相似文献   

5.
Activation of N-methyl-d-aspartate (NMDA) receptors has been hypothesized to mediate certain forms of learning and memory. This hypothesis is based on the ability of competitive and uncompetitive NMDA receptor antagonists to disrupt learning. We investigated the effects of glycine site antagonists and partial agonists on deficits of acquisition (learning) and consolidation (memory) in a single trial inhibitory avoidance learning paradigm. Posttraining administration of either hypoxia (exposure to 7% oxygen) or the convulsant drug pentylenetetrazole (PTZ) (45 mg/kg) to mice impaired consolidation without producing neuronal cell death. Pretreatment with the competitive glycine antagonist 7-chlorokynurenic acid (7KYN) and the glycine partial agonists 1-aminocyclopropanecarboxylic acid (ACPC) and (+)HA-966 prevented memory deficits induced by hypoxia and PTZ, but did not affect scopolamine-induced learning impairment. In addition, ACPC prevented consolidation deficits evoked by a nonexcitotoxic concentration of l-trans-pyrrolidine-2, 4-dicarboxylate, a competitive inhibitor of glutamate transport that increases extracellular levels of glutamate. Moreover, (+)HA-966, 7KYN, and ACPC facilitated both acquisition and consolidation of inhibitory avoidance training, an effect that was dose-dependent and reversed by glycine. These results indicate that memory deficits induced by both hypoxia and PTZ involve NMDA receptor activation. Furthermore, the present findings demonstrate that glycine site antagonists and partial agonists prevent memory deficits of inhibitory avoidance learning by affecting consolidation, but not acquisition processes.  相似文献   

6.
Previous research from our laboratory has implicated the basolateral amygdala (BLA) complex in the acquisition and consolidation of cue-cocaine associations, as well as extinction learning, which may regulate the long-lasting control of conditioned stimuli (CS) over drug-seeking behavior. Given the well established role of NMDA glutamate receptor activation in other forms of amygdalar-based learning, we predicted that BLA-mediated drug-cue associative learning would be NMDA receptor dependent. To test this hypothesis, male Sprague-Dawley rats self-administered i.v. cocaine (0.6 mg/kg/infusion) in the absence of explicit CS pairings (2-h sessions, 5 days), followed by a single 1-h classical conditioning (CC) session, during which they received passive infusions of cocaine discretely paired with a light+tone stimulus complex. Following additional cocaine self-administration sessions in the absence of the CS (2-h sessions, 5 days) and extinction training sessions (no cocaine or CS presentation, 2-h sessions, 7 days), the ability of the CS to reinstate cocaine-seeking on three test days was assessed. Rats received bilateral intra-BLA infusions (0.5 microl/hemisphere) of vehicle or the selective NMDA receptor antagonist, 2-amino-5-phosphonovalerate (AP-5), immediately prior to the CC session (acquisition), immediately following the CC session (consolidation), or immediately following reinstatement testing (consolidation of conditioned-cued extinction learning). AP-5 administered before or after CC attenuated subsequent CS-induced reinstatement, whereas AP-5 administered immediately following the first two reinstatement tests impaired the extinction of cocaine-seeking behavior. These results suggest that NMDA receptor-mediated mechanisms within the BLA play a crucial role in the consolidation of drug-CS associations into long-term memories that, in turn, drive cocaine-seeking during relapse.  相似文献   

7.
The prefrontal cortex is known to be involved in the acquisition of trace conditioning, a higher-cognitive form of Pavlovian conditioning in which a conditioned stimulus and an unconditioned stimulus are separated by a time gap. We have recently reported that medial prefrontal (mPFC) extracellular-signal regulated kinase (Erk) phosphorylation is involved in the long-term memory storage of trace fear conditioning. Because of the important role dopamine D1 receptors play in prefrontal function, such as working memory, and due to evidence that dopamine D1 receptor activity can modulate plasticity, we investigated their role in prefrontal Erk phosphorylation following trace fear conditioning. We found that inhibition of dopamine D1 receptors through intra-mPFC infusion of SCH-23390 (1 microg/0.5 microL) 15 min prior to trace fear conditioning resulted in a decrease in training-related Erk phosphorylation. Additionally, pre-training intra-mPFC infusion of SCH-23390 also resulted in the impairment of long-term retention of CS-US association. These findings implicate mPFC dopamine D1 receptor activity in the storage of long-term memory for higher-cognitive associative tasks.  相似文献   

8.
The medium spiny neurons of the nucleus accumbens receive a unique convergence of dopaminergic and glutamatergic inputs from regions associated with motivational, cognitive, and sensory processes. Long-term forms of plasticity in the nucleus accumbens associated with such processes as appetitive learning and drug addiction may require coactivation of both dopamine D1 and glutamate N-methyl-D-aspartate (NMDA) receptors. This notion implies that an intracellular mechanism is likely to be involved in these long-term neuroadaptive processes. The present series of experiments examined the effects of intra-accumbens microinfusion of protein kinase inhibitors on acquisition of an instrumental task, lever-pressing for food. Male Sprague-Dawley rats were bilaterally implanted with chronic indwelling cannulae aimed at the nucleus accumbens core. Following recovery, animals were food-restricted and subsequently trained for operant responding. The broad-based serine/threonine kinase inhibitor H-7 (5 or 27 nmol per side) dose-dependently impaired learning when infused immediately after testing on days 1-4. Rp-cAMPS, a cAMP-dependent protein kinase (PKA) inhibitor, also impaired learning regardless of whether it was infused immediately before (5 or 20 nmol) or immediately after (10 nmol) testing on days 1-4. Rp-cAMPS (10 nmol) also inhibited learning when infused 1 h after testing, though to a lesser extent than when administered before or immediately after testing. The PKA stimulator Sp-cAMPS (5 or 20 nmol) also impaired learning when infused before testing, suggesting that there is an optimal level of PKA activity required for learning. None of the drugs used produced nonspecific motor or feeding effects. These results provide evidence supporting the involvement of nucleus accumbens PKA in appetitive learning and suggest that this kinase may be involved in long-term changes associated with this and other motivationally based neuroadaptive processes.  相似文献   

9.
N-Methyl-D-aspartate (NMDA) receptors appear to be involved in CS processing and memory consolidation. The present paper analyzed the effect of the non-competitive NMDA receptor antagonist Dizocilpine maleate (MK-801) on Latent Inhibition (LI)-retarded learning of a CS-US association after to-be-CS preexposures at time of testing, using Wistar rats as experimental subjects. If NMDA receptors are involved in CS processing, MK-801 administration should affect LI. In fact, previous experiments revealed that a 2.0mg/kg MK-801 dose, administered 20 h before preexposure and conditioning, abolished LI in a conditioned taste-aversion paradigm. In the present paper, MK-801 (0.2 mg/kg) was either injected after preexposure, after conditioning, or after both preexposure and conditioning stages. LI was abolished when MK-801 was injected after preexposure, but not when it was injected after conditioning. These results support the role of NMDA receptors in CS processing and memory consolidation.  相似文献   

10.
The perirhinal cortex (PRh) has been strongly implicated in object recognition memory and visual stimulus representation. Studies of object recognition have revealed evidence for the involvement of several neurotransmitter subsystems, including those involving NMDA (N-methyl-d-aspartic acid) and muscarinic cholinergic receptors. In the present study, we assessed the possible involvement of PRh and related receptor subsystems in two-choice visual discrimination learning by Lister Hooded rats tested in touchscreen-equipped operant boxes. In Experiment 1, daily pre-training inactivation of PRh with the GABAA receptor agonist muscimol (0.5 μg/hemisphere) significantly impaired acquisition of the two-choice visual discrimination. In Experiment 2, daily pre-training blockade of either NMDA or muscarinic receptors in PRh with AP5 (5.9 μg/hemisphere) or scopolamine (10 μg/hemisphere), respectively, impaired task acquisition. These results parallel the findings from object recognition studies and suggest a generality of neurotransmitter receptor involvement underlying the role of PRh in both object recognition memory and visual discrimination learning. The involvement of PRh in both types of tasks may be related to its role in complex visual stimulus representation.  相似文献   

11.
Although much has been learned about the role of the amygdala in Pavlovian fear conditioning, relatively little is known about an involvement of this structure in more complex aversive learning, such as acquisition of an active avoidance reaction. In the present study, rats with a pretraining injection of the N-methyl-D-aspartate (NMDA) receptor antagonist, 2-amino-5-phosphonopentanoic acid (APV), into the basolateral amygdala (BLA) were found to be impaired in two-way active avoidance learning. During multitrial training in a shuttle box, the APV-injected rats were not different from the controls in sensitivity to shock or in acquisition of freezing to contextual cues. However, APV injection led to impaired retention of contextual fear when tested 48 h later, along with an attenuation of c-Fos expression in the amygdala. These results are consistent with the role of NMDA receptors of the BLA in long-term memory of fear, previously documented in Pavlovian conditioning paradigms. The APV-induced impairment in the active avoidance learning coincided with deficits in directionality of the escape reaction and in attention to conditioned stimuli. These data indicate that normal functioning of NMDA receptors in the basolateral amygdala is required during acquisition of adaptive instrumental responses in a shuttle box but is not necessary for acquisition of short-term contextual fear in this situation.  相似文献   

12.
The polyamines, spermine, spermidine, and putrescine, are a group of aliphatic amines that may act as physiological modulators of N-methyl-D-aspartate (NMDA) receptors. Although the modulatory role of polyamines in NMDA receptor function has long been known, the effects of polyamines on learning and memory only recently began to be unraveled. In the present study, we investigated the effect of bilateral infusions of spermidine (0.02-2 nmol), a polyamine agonist, into the CA1 region of the rat dorsal hippocampus on inhibitory avoidance learning 30 min pre-training, immediately post-training, 6 h post-training, or 10 min pre-test. Bilateral microinjections of 0.2 nmol spermidine prolonged step-down latencies compared to the respective control group when administered 30 min pre-training or immediately post-training. These results provide evidence that the modulatory effects of spermidine on the acquisition and/or early consolidation of memory of inhibitory avoidance tasks in the hippocampus occur within a limited time window.  相似文献   

13.
问黎敏  安书成  刘慧 《心理学报》2012,44(10):1318-1328
为探讨慢性不可预见性温和应激(chronic unpredictable mild stress, CUMS)诱发抑郁样行为发生中海马5-羟色胺1A受体(5-hydroxytryptamine receptor 1A, 5-HT1AR)表达与作用, 及其对谷氨酸N-甲基-D-天冬氨酸(N-methyl-D-aspartic acid, NMDA)受体和α-氨基羟甲基异恶唑丙酸(α-amino-3-hydroxy-5- methylisoxazole-4-propionic acid, AMPA)受体的影响。通过建立CUMS动物模型, 给应激抑郁模型大鼠海马微量注射5-HT1A受体激动剂、给正常大鼠海马微量注射5-HT1A受体拮抗剂, 测量大鼠体重变化率, 并采用糖水偏爱测试、旷场实验和悬尾实验等方法对大鼠进行行为学检测, 运用Western blot和ELISA方法检测大鼠海马组织中5-HT1AR和NMDAR和AMPAR的关键亚基的表达以及磷酸化水平。结果显示, 与对照组相比, CUMS组大鼠表现出抑郁样行为, 海马5-HT1AR、AMPA受体的GluR2/3亚基表达及磷酸化明显降低, NMDA受体的NR1和NR2B亚基表达及磷酸化显著增加; 正常大鼠海马微量注射5-HT1A受体拮抗剂WAY100635, 动物行为学表现及AMPA受体、NMDA受体表达及磷酸化水平均与CUMS组相同; 注射5-HT1A受体激动剂8-OH-DPAT能逆转应激诱导的上述改变。以上结果表明, CUMS诱发抑郁样行为与海马5-HT1AR表达下降, AMPAR表达量及磷酸化水平降低, NMDAR表达量及磷酸化水平升高有关。5-HT通过5-HT1AR产生抗抑郁作用。5-HT1AR激动剂抗抑郁作用与降低NMDAR表达量及磷酸化水平, 提高AMPAR表达量及磷酸化水平密切相关。  相似文献   

14.
Glutamate receptor-dependent neural plasticity is thought to be implicated in memory processes. Ionotropic N-methyl-D-aspartate- (NMDA) sensitive and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate- (AMPA) sensitive glutamate receptors have been particularly studied for their role in synaptic plasticity. Drugs can alter AMPA and NMDA receptor neurotransmission by competing for the glutamate site or other sites on these receptor proteins. Variants of the protein subunits forming AMPA and NMDA heteromers contribute to the complexity of pharmacological activity at these receptors. The NMDA receptor has numerous modulatory centers, including the glycine binding site, NR2B protein specific binding site, and an intrachannel (PCP) binding site. In this study, the accuracy and rate of rats performing under a Fixed Consecutive Number (FCN) operant task were measured after administrations of site-selective AMPA and NMDA receptor modulators. Test compounds included two glycine site NMDA agonists [(+)HA 966 and D-cycloserine], two NR2-B site NMDA antagonists (eliprodil and ifenprodil), an NMDA channel blocking antagonist (MK 801), and a competitively acting AMPA receptor antagonist (NBQX). The accuracy of FCN performance was not affected by response-rate-altering doses of (+) HA 966, D-cycloserine, eliprodil, ifenprodil, or NBQX. MK 801, on the other hand, reduced performance accuracy at several doses. These results are consistent with earlier studies suggesting that AMPA antagonists minimally affect working memory and that glycine and NR2B protein-specific modulatory sites may have advantages as targets for the development of medications intended to alter NMDA receptor-mediated transmission.  相似文献   

15.
The present experiments determined the consequences of blocking muscarinic cholinergic receptors of the prelimbic (PL) cortex in the acquisition and retention of an odor-reward associative task. Rats underwent a training test (five trials) and a 24-h retention test (two retention trials and two relearning trials). In the first experiment, rats were bilaterally infused with scopolamine (20 or 5 microg/site) prior to training. Although scopolamine rats showed acquisition equivalent to PBS-injected controls, they exhibited weakened performance in the 24-h retention test measured by number of errors. In the second experiment, rats were injected with scopolamine (20 microg/site) immediately or 1 h after training and tested 24 h later. Scopolamine rats injected immediately showed severe amnesia detected in two performance measures (errors and latencies), demonstrating deficits in retention and relearning, whereas those injected 1 h later showed good 24-h test performance, similar to controls. These results suggest that muscarinic transmission in the PL cortex is essential for early memory formation, but not for acquisition, of a rapidly learned odor discrimination task. Findings corroborate the role of acetylcholine in consolidation processes and the participation of muscarinic receptors in olfactory associative tasks.  相似文献   

16.
The N-methyl-D-asparate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) subtypes of glutamate receptors have been shown to play critical roles in various forms of synaptic plasticity (i.e., learning and memory, long-term potentiation). We previously demonstrated that the binding of [3H]AMPA to the AMPA subtype of glutamate receptors was selectively increased in hippocampus following classical conditioning of the rabbit nictitating membrane response in a delay paradigm. We report here that the same effect was observed in a variant of this learning paradigm that requires the participation of the hippocampus, i.e., trace conditioning of the rabbit nictitating membrane. The binding of [3H]TCP (N-[1-(2-thienyl)cyclo-hexyl]-3,4-piperidine) to the NMDA receptor remained unchanged in all the experimental groups tested. Paired presentations of conditioned and unconditioned stimuli resulted in an increased binding of [3H]AMPA, an agonist of the AMPA receptors, in several hippocampal subfields while the binding of an antagonist, [3H]CNQX (6-nitro-7-cyanoquinoxaline-2,3-dione), was decreased. The results suggest that the learning-induced changes in binding of the ligands to the AMPA receptor reflect changes in affinity of the receptor rather than in the number of sites. These results support the hypothesis that changes in hippocampal glutamate receptors are a corollary of synaptic plasticity in certain forms of learning.  相似文献   

17.
Recent evidence now points to a role of glutamate transmission within the nucleus accumbens (Nacc) in spatial learning and memory. Unfortunately, the role of the distinct classes of glutamate receptors within this structure in mediating the different steps of the memorization process is not clear. The aim of this study therefore was to further investigate this issue, trying to assess the involvement of the two classes of glutamate receptors within the Nacc in consolidation of spatial information using an associative spatial task, the water maze. For this purpose, focal injections of the NMDA antagonist, AP-5, and of the AMPA antagonist, DNQX, have been performed immediately after the training phase, and mice have been tested for retention 24 h later. Two different versions of the water-maze task have been used: In the place version, animals could learn the position of the platform using visual distal cues, and in the cue version, the location of the platform was indicated by a single proximal cue. The results demonstrated that posttraining NMDA receptor blockade affects mice response in the place but not in the cue water-maze task. On the contrary, AMPA receptor blockade induced no effect in either version of the task. These data confirm a functional dissociation between glutamate receptors located in the Nacc in modulating spatial memory consolidation and indicate that they are specifically involved in consolidation of information necessary to acquire a place but not to a guidance strategy.  相似文献   

18.
The present study investigated whether the selective nociceptin opioid peptide (NOP) receptor agonist, Ro64-6198, impairs acquisition of fear conditioning through glutamatergic mechanisms. Systemic administration of Ro64-6198 (0.3 and 1 mg/kg) or the non-competitive NMDA receptor antagonist, MK-801 (0.03 and 0.1 mg/kg) prior to conditioning severely impaired contextual but not cued fear learning in C57BL/6N mice. When administered together at sub-effective doses, Ro64-6198 (0.5 mg/kg) and MK-801 (0.05 mg/kg), synergistically impaired contextual fear learning, but left cued fear learning intact. We next used the immediate shock deficit paradigm (ISD) to examine the effects of Ro64-6198 and MK-801 on contextual memory formation in the absence of the foot-shock. As expected, naive mice that were shocked briefly after being placed in the training chamber displayed no contextual fear conditioning. This learning deficit was elevated by prior exposure of mice to the training context. Furthermore, administration of Ro64-6198 and MK-801, either separately at amnesic doses (1 mg/kg and 0.1 mg/kg, respectively) or concomitantly at sub-effective doses (0.5 mg/kg and 0.05 mg/kg, respectively) significantly reduced the facilitating effects of context preexposure. These findings demonstrate the existence of functional antagonism between NOP and NMDA receptors that predominantly contributes to modulation of conditioned fear learning which involves spatial-processing demands.  相似文献   

19.
Group I metabotropic glutamate receptors (mGlu1 and 5) have been implicated in synaptic plasticity and learning and memory. However, much of our understanding of how these receptors in different brain regions contribute to distinct memory stages in different learning tasks remains incomplete. The present study investigated the effects of the mGlu5 receptor antagonist, 2-methyl-6-(phenylethynyl)-pyridine (MPEP), and mGlu1 receptor antagonist, (S)-(+)-alpha-amino-4-carboxy-2-methylbenzene-acetic acid (LY 367385) in the dorsal hippocampus on the consolidation and extinction of memory for inhibitory avoidance learning. Male, Sprague-Dawley rats were trained in a single-trial step-down inhibitory avoidance task. MPEP, LY 367385 or saline were infused bilaterally into the CA1 region immediately after training or immediately after the first retention test which was given 24h after training. Rats receiving MPEP (1.5 or 5.0 microg/side) or LY 367385 (0.7 or 2.0 microg/side) infusion exhibited a dose-dependent decrease in retention when tested 24h later. MPEP was ineffective while LY 367385 significantly attenuated extinction when injected after the first retention test using an extinction procedure. These findings indicate a selective participation of hippocampal group I mGlu receptors in memory processing in this task.  相似文献   

20.
The relevance of perirhinal cortical cholinergic and glutamatergic neurotransmission for taste recognition memory and learned taste aversion was assessed by microinfusions of muscarinic (scopolamine), NMDA (AP-5), and AMPA (NBQX) receptor antagonists. Infusions of scopolamine, but not AP5 or NBQX, prevented the consolidation of taste recognition memory using attenuation of neophobia as an index. In addition, learned taste aversion in both short- and long-term memory tests was exclusively impaired by scopolamine. These data provide neurochemical support for the theory that cholinergic activity of the perirhinal cortex participates in the formation of the taste memory trace and that it is independent of the NMDA and AMPA receptor activity. These results support the idea that cholinergic neurotransmission in the perirhinal cortex is also essential for acquisition and consolidation of taste recognition memory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号