首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
CPEB is a sequence-specific RNA binding protein that regulates translation at synapses. In neurons of CPEB knockout mice, synaptic efficacy is reduced. Here, we have performed a battery of behavioral tests and find that relative to wild-type animals, CPEB knockout mice, although similar on many baseline behaviors, have reduced extinction of memories on two hippocampal-dependent tasks. A corresponding microarray analysis reveals that about 0.14% of hippocampal genes have an altered expression in the CPEB knockout mouse. These data suggest that CPEB-dependent local protein synthesis may be an important cellular mechanism underlying extinction of hippocampal-dependent memories.  相似文献   

2.
Growth arrest and DNA damage-inducible β (Gadd45b) has been shown to be involved in DNA demethylation and may be important for cognitive processes. Gadd45b is abnormally expressed in subjects with autism and psychosis, two disorders associated with cognitive deficits. Furthermore, several high-throughput screens have identified Gadd45b as a candidate plasticity-related gene. However, a direct demonstration of a link between Gadd45b and memory has not been established. The current studies first determined whether expression of the Gadd45 family of genes was affected by contextual fear conditioning. Gadd45b, and to a lesser extent Gadd45g, were up-regulated in the hippocampus following contextual fear conditioning, whereas Gadd45a was not. Next, Gadd45b knockout mice were tested for contextual and cued fear conditioning. Gadd45b knockout mice exhibited a significant deficit in long-term contextual fear conditioning; however, they displayed normal levels of short-term contextual fear conditioning. No differences between Gadd45b knockout and wild-type mice were observed in cued fear conditioning. Because cued fear conditioning is hippocampus independent, while contextual fear conditioning is hippocampus dependent, the current studies suggest that Gadd45b may be important for long-term hippocampus-dependent memory storage. Therefore, Gadd45b may be a novel therapeutic target for the cognitive deficits associated with many neurodevelopmental, neurological, and psychiatric disorders.  相似文献   

3.
4.
Cyclophosphamide (CYP) is an anti-neoplastic agent as well as an immunosuppressive agent. In order to elucidate the alteration in adult hippocampal function following acute CYP treatment, hippocampus-related behavioral dysfunction and changes in adult hippocampal neurogenesis in CYP-treated (intraperitoneally, 40 mg/kg) mice (8–10-week-old ICR) were analyzed using hippocampus-dependent learning and memory tasks (passive avoidance and object recognition memory test) and immunohistochemical markers of neurogenesis (Ki-67 and doublecortin (DCX)). Compared to the vehicle-treated controls, mice trained at 12 h after CYP injection showed significant memory deficits in passive avoidance and the object recognition memory test. The number of Ki-67- and DCX-positive cells began to decrease significantly at 12 h post-injection, reaching the lowest level at 24 h after CYP injection; however, this reverted gradually to the vehicle-treated control level between 2 and 10 days. We suggest that the administration of a chemotherapeutic agent in adult mice interrupts hippocampal functions, including learning and memory, possibly through the suppression of hippocampal neurogenesis.  相似文献   

5.
The 5-HT3 receptor for serotonin is expressed within limbic structures and is known to modulate neurotransmitter release, suggesting that this receptor may influence learning and memory. Perturbations in serotonergic neurotransmission lead to changes in the ability to attend, learn, and remember. To examine the role of 5-HT3 receptors in learning, memory, and attention, 5-HT3 receptor overexpressing (5-HT3-OE) transgenic mice and their wild-type littermates (WT) were tested in Pavlovian contextual and cued fear conditioning, fear extinction, and latent inhibition (LI) paradigms. Prepulse inhibition (PPI) was assessed to reveal changes in sensorimotor gating. Additionally, anxious behaviors, shock sensitivity, and reactions to novel stimuli were evaluated. 5-HT3-OE mice displayed enhanced contextual conditioning, whereas cued conditioning remained the same as that of WT mice. 5-HT3-OE mice did not differ from WT in extinction rates to either the context or cue. LI was enhanced for 5-HT3-OE mice compared to WT. PPI remained unchanged. No differences in sensitivity to footshock or startle were found. However, 5-HT3-OE mice demonstrated heightened exploratory behavior in response to novel environmental stimuli and decreased anxiety as measured in the elevated plus-maze. Results indicate that overexpression of the 5-HT3 receptor in mouse forebrain results in enhanced hippocampal-dependent learning and attention. Enhanced inspective behavior in response to novelty may contribute to the observed improvements in learning, memory, and attention due to 5-HT3 receptor overexpression.  相似文献   

6.
Plasticity in dendritic spines may underlie learning and memory. Spinophilin, a protein enriched in dendritic spines, has the properties of a scaffolding protein and is believed to regulate actin cytoskeletal dynamics affecting dendritic spine morphology. It also binds protein phosphatase-1 (PP-1), an enzyme that regulates dendritic spine physiology. In this study, we tested the role of spinophilin in conditioned taste aversion learning (CTA) using transgenic spinophilin knockout mice. CTA is a form of associative learning in which an animal rejects a food that has been paired previously with a toxic effect (e.g., a sucrose solution paired with a malaise-inducing injection of lithium chloride). Acquisition and extinction of CTA was tested in spinophilin knockout and wild-type mice using taste solutions (sucrose or sodium chloride) or flavors (Kool-Aid) paired with moderate or high doses of LiCl (0.15 M, 20 or 40 mL/kg). When sucrose or NaCl solutions were paired with a moderate dose of LiCl, spinophilin knockout mice were unable to learn a CTA. At the higher dose, knockout mice acquired a CTA but extinguished more rapidly than wild-type mice. A more salient flavor stimulus (taste plus odor) revealed similar CTA learning at both doses of LiCl in both knockouts and wild types. Sensory processing in the knockouts appeared normal because knockout mice and wild-type mice expressed identical unconditioned taste preferences in two-bottle tests, and identical lying-on-belly responses to acute LiCl. We conclude that spinophilin is a candidate molecule required for normal CTA learning.  相似文献   

7.
Retinoid signaling has been recently shown to be required for mnemonic functions in rodents. To dissect the behavioral and molecular mechanisms involved in this requirement, we have analyzed the spatial and recognition working memory in mice carrying null mutations of retinoid receptors RARbeta and RXRgamma. Double mutants appeared deficient in spatial working memory as tested in spontaneous alternation in the Y-maze and delayed nonmatch to place (DNMTP) test in the T-maze. These mutant mice did acquire, however, spatial place reference or right/left discrimination tasks in the T-maze set-up, indicating that basic sensorimotor functions, spatial orientation, and motivational factors are unlikely to account for deficits in working memory-sensitive tasks. Double-mutant mice were also deficient in novel object recognition at intermediate, but not short delays. RXRgamma appeared to be the functionally predominant receptor in modulation of the working memory, as RXRgamma, but not RARbeta single null mutant mice exhibited deficits similar to those observed in the double mutants. The mechanism of this modulation is potentially related to functions of RXRgamma in frontal and perirhinal cortex, structures in which we detected RXRgamma expression and which are functionally implicated in working memory processes.  相似文献   

8.
The roles of serine proteases and protease activated receptors have been extensively studied in coagulation, wound healing, inflammation, and neurodegeneration. More recently, serine proteases have been suggested to influence synaptic plasticity. In this context, we examined the role of protease activated receptor 1 (PAR1), which is activated following proteolytic cleavage by thrombin and plasmin, in emotionally motivated learning. We were particularly interested in PAR1 because its activation enhances the function of NMDA receptors, which are required for some forms of synaptic plasticity. We examined several baseline behavioral measures, including locomotor activity, expression of anxiety-like behavior, motor task acquisition, nociceptive responses, and startle responses in C57Bl/6 mice in which the PAR1 receptor has been genetically deleted. In addition, we evaluated learning and memory in these mice using two memory tasks, passive avoidance and cued fear-conditioning. Whereas locomotion, pain response, startle, and measures of baseline anxiety were largely unaffected by PAR1 removal, PAR1-/- animals showed significant deficits in a passive avoidance task and in cued fear conditioning. These data suggest that PAR1 may play an important role in emotionally motivated learning.  相似文献   

9.
Homer1 belongs to a family of scaffolding proteins that interact with various post-synaptic density proteins including group I metabotropic glutamate receptors (mGluR1/5). Previous research in our laboratory implicates the Homer1c isoform in spatial learning. Homer1 knockout mice (H1-KO) display cognitive impairments, but their synaptic plasticity properties have not been described. Here, we investigated the role of Homer1 in long-term potentiation (LTP) in the hippocampal CA1 region of H1-KO mice in vitro. We found that late-phase LTP elicited by high frequency stimulation (HFS) was impaired, and that the induction and maintenance of theta burst stimulation (TBS) LTP were reduced in H1-KO. To test the hypothesis that Homer1c was sufficient to rescue these LTP deficits, we delivered Homer1c to the hippocampus of H1-KO using recombinant adeno-associated virus (rAAV). We found that rAAV-Homer1c rescued HFS and TBS-LTP in H1-KO animals. Next, we tested whether the LTP rescue by Homer1c was occurring via mGluR1/5. A selective mGluR5 antagonist, but not an mGluR1 antagonist, blocked the Homer1c-induced recovery of late-LTP, suggesting that Homer1c mediates functional effects on plasticity via mGluR5. To investigate the role of Homer1c in spatial learning, we injected rAAV-Homer1c to the hippocampus of H1-KO. We found that rAAV-Homer1c significantly improved H1-KO performance in the Radial Arm Water Maze. These results point to a significant role for Homer1c in synaptic plasticity and learning.  相似文献   

10.
Early life experience affects behavior and brain mechanisms. Handling rats during the first three weeks in life can slow age-related cognitive decline (as measured by a hippocampal-dependent spatial learning task) and reduce age-related hippocampal neuron loss. It is not clear, however, whether this early environmental influence on learning is selective for old age or is more general, affecting cognitive development during infancy and young adulthood as well. We briefly exposed neonatal rats to a novel non-home environment for 3 min daily during the first three weeks of life (as a component of the handling method). We found that this brief early environmental manipulation resulted in enhanced hippocampal-dependent learning immediately after weaning and that this learning enhancement persisted into adulthood. These results suggest that subtle early life events can affect cognitive development in all developmental stages and that changes in neural mechanisms other than neuron number are likely to mediate the learning enhancement at multiple developmental stages.  相似文献   

11.
Peripheral glucose administration attenuates the effects of muscarinic cholinergic antagonists on several measures, including spontaneous alternation, inhibitory avoidance, and locomotor activity. The present study examined glucose interactions with mecamylamine, a nicotinic cholinergic antagonist, on these measures. Mecamylamine (5 mg/kg, sc) significantly impaired spontaneous alternation performance. Glucose (100 mg/kg, ip) administered with mecamylamine attenuated the impairment. Treatment with hexamethonium (5 and 10 mg/kg, sc), a peripheral nicotinic blocker, did not impair performance. Pretraining treatment with mecamylamine, but not hexamethonium, significantly reduced later retention latencies on inhibitory avoidance tests. Glucose, administered with mecamylamine prior to training, significantly attenuated the impaired test performance. Mecamylamine, but not hexamethonium, significantly decreased locomotor activity. In contrast to the attenuating effects of glucose on the other measures above, glucose administered with mecamylamine potentiated the decreased locomotor activity. These findings demonstrate that glucose influences the behavioral effects of a nicotinic cholinergic antagonist in a manner generally similar to that of muscarinic cholinergic antagonists, and supports previous evidence that circulating glucose interacts with central cholinergic functions.  相似文献   

12.
Epinephrine peripherally administered to rats and mice immediately following avoidance and/or appetitive training enhances later memory retention in both young and old animals. These findings suggest a possible involvement of peripheral adrenergic systems in memory dysfunctions which accompany aging.  相似文献   

13.
Cognitive procedural learning is characterised by three phases, each involving distinct processes. Considering the implication of episodic memory in the first cognitive stage, the impairment of this memory system might be responsible for a slowing down of the cognitive procedural learning dynamics in the course of ageing. Performances of massed cognitive procedural learning were evaluated in older and younger participants using the Tower of Toronto task. Nonverbal intelligence and psychomotor abilities were used to analyse procedural dynamics, while episodic memory and working memory were assessed to measure their respective contributions to learning strategies. This experiment showed that older participants did not spontaneously invoke episodic memory and presented a slowdown in the cognitive procedural learning associated with a late involvement of working memory. These findings suggest that the slowdown in the cognitive procedural learning may be linked with the implementation of different learning strategies less involving episodic memory in older participants.  相似文献   

14.
Activation of N-methyl-d-aspartate (NMDA) receptors has been hypothesized to mediate certain forms of learning and memory. This hypothesis is based on the ability of competitive and uncompetitive NMDA receptor antagonists to disrupt learning. We investigated the effects of glycine site antagonists and partial agonists on deficits of acquisition (learning) and consolidation (memory) in a single trial inhibitory avoidance learning paradigm. Posttraining administration of either hypoxia (exposure to 7% oxygen) or the convulsant drug pentylenetetrazole (PTZ) (45 mg/kg) to mice impaired consolidation without producing neuronal cell death. Pretreatment with the competitive glycine antagonist 7-chlorokynurenic acid (7KYN) and the glycine partial agonists 1-aminocyclopropanecarboxylic acid (ACPC) and (+)HA-966 prevented memory deficits induced by hypoxia and PTZ, but did not affect scopolamine-induced learning impairment. In addition, ACPC prevented consolidation deficits evoked by a nonexcitotoxic concentration of l-trans-pyrrolidine-2, 4-dicarboxylate, a competitive inhibitor of glutamate transport that increases extracellular levels of glutamate. Moreover, (+)HA-966, 7KYN, and ACPC facilitated both acquisition and consolidation of inhibitory avoidance training, an effect that was dose-dependent and reversed by glycine. These results indicate that memory deficits induced by both hypoxia and PTZ involve NMDA receptor activation. Furthermore, the present findings demonstrate that glycine site antagonists and partial agonists prevent memory deficits of inhibitory avoidance learning by affecting consolidation, but not acquisition processes.  相似文献   

15.
BDNF regulates components of cognitive processes and has been implicated in psychiatric disorders. Here we report that genetic overexpression of the BDNF mature isoform (BDNF-tg) in female mice impaired working memory functions while sparing components of fear conditioning. BDNF-tg mice also displayed reduced breeding efficiency, higher anxiety-like scores, high self-grooming, impaired prepulse inhibition, and higher susceptibility to seizures when placed in a new empty cage, as compared with wild-type (WT) littermate controls. Control measures of general health, locomotor activity, motor coordination, depression-related behaviors, and sociability did not differ between genotypes. The present findings, indicating detrimental effects of life-long increased BDNF in mice, may inform human studies evaluating the role of BDNF functional genetic variations on cognitive abilities and vulnerability to psychiatric disorders.  相似文献   

16.
Ethanol is a frequently abused drug that impairs cognitive processes such as learning. Varenicline, an α4β2 nicotinic receptor partial agonist and α7 nicotinic receptor full agonist prescribed for smoking cessation, has been shown to decrease ethanol consumption. The current study investigated whether varenicline could ameliorate ethanol-induced deficits in learning and whether varenicline alters blood alcohol concentration in C57BL/6 mice. Conditioning consisted of two auditory conditioned stimulus (CS; 30 s, 85 dB white noise)—foot shock unconditioned stimulus (US; 2 s, 0.57 mA) pairings. For all studies, saline or ethanol (1.0, 1.5, 2.0 g/kg i.p.) was administered 15 min before training, and saline or varenicline (0.05, 0.1, 0.2 mg/kg i.p.) was administered 60 min before either training or testing. For blood alcohol analysis, saline or varenicline (0.1 mg/kg) was administered 60 min before collection, and saline or ethanol (1.0, 1.5, 2.0 g/kg) was administered 15 min before collection. Varenicline dose-dependently ameliorated ethanol-induced conditioning deficits for all three doses of ethanol when administered before training but not when administered 24 h later, before testing. In addition, varenicline did not alter blood alcohol concentration. The smoking cessation aid varenicline may have therapeutic uses for treating ethanol-associated disruptions in cognitive processes.  相似文献   

17.
The report tests the hypothesis that normals who exhibit schizophrenic tendencies are likely to show verbal-memory deficits of the types observed in schizophrenics. Thirty-four middle-aged men were tested using the MMPI 2–7–8 schizophrenic-tendency scales, the Sorting Consistency Task and the Physical Anhedonia Scale. The dependent variables were four memory tests selected on the basis of their known discriminating power and their relevance. The results showed the Schizophrenia (8) and Psychasthenia (7) scales of MMPI, and the Sorting Consistency Task effectively detected memory deficits in normals. When partialling out intelligence, as a measure of general current cognitive functioning, it appeared that one of the deficits reflecting encoding difficulty disappeared. This suggests that normal ‘high-risk’ subjects for schizophrenia show a ‘generalized deficit’, which affects memory in addition to a ‘differential deficit’ in retention. Though tentative, the results can be taken as an indication that ‘high-risk’ subjects indeed show memory deficits and that detecting these deficits requires relatively sensitive tools.  相似文献   

18.
The N-end rule is one ubiquitin-proteolytic pathway that relates the in vivo half-life of a protein to the identity of its N-terminal residue. NTAN1 deamidates N-terminal asparagine to aspartate, which is conjugated to arginine by ATE1. An N-terminal arginine-bearing substrate protein is recognized, ubiquitylated by UBR1/E3α, and subsequently degraded by 26S proteasomes. Previous research showed that NTAN1-deficient mice exhibited impaired long-term memory in the Lashley III maze. Therefore, a series of studies, designed to assess the role of NTAN1 in short- and intermediate-term memory processes, was undertaken. Two hundred sixty mice (126 −/−; 134 +/ +) received Lashley III maze training with intertrial intervals ranging from 2–180 min. Results indicated that inactivation of NTAN1 amidase differentially affects short-, intermediate-, and long-term memory.  相似文献   

19.
20.
The GluA1 AMPA receptor subunit is a key mediator of hippocampal synaptic plasticity and is especially important for a rapidly-induced, short-lasting form of potentiation. GluA1 gene deletion impairs hippocampus-dependent, spatial working memory, but spares hippocampus-dependent spatial reference memory. These findings may reflect the necessity of GluA1-dependent synaptic plasticity for short-term memory of recently visited places, but not for the ability to form long-term associations between a particular spatial location and an outcome. This hypothesis is in concordance with the theory that short-term and long-term memory depend on dissociable psychological processes. In this study we tested GluA1−/− mice on both short-term and long-term spatial memory using a simple novelty preference task. Mice were given a series of repeated exposures to a particular spatial location (the arm of a Y-maze) before their preference for a novel spatial location (the unvisited arm of the maze) over the familiar spatial location was assessed. GluA1−/− mice were impaired if the interval between the trials was short (1 min), but showed enhanced spatial memory if the interval between the trials was long (24 h). This enhancement was caused by the interval between the exposure trials rather than the interval prior to the test, thus demonstrating enhanced learning and not simply enhanced performance or expression of memory. This seemingly paradoxical enhancement of hippocampus-dependent spatial learning may be caused by GluA1 gene deletion reducing the detrimental effects of short-term memory on subsequent long-term learning. Thus, these results support a dual-process model of memory in which short-term and long-term memory are separate and sometimes competitive processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号