首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although functional cerebral asymmetries (FCAs) affect all cognitive domains, their modulation of the efficacy of specific executive functions is largely unexplored. In the present study, we used a lateralized version of the task switching paradigm to investigate the relevance of hemispheric asymmetries for cognitive control processes. Words were tachistoscopically presented in the left (LVF) and right visual half field (RVF). Participants had to categorise the words either based on their initial letters, or according to their word type. On half of the trials the task changed (switch trials) whereas on the other half it stayed the same (repeat trials). ERPs were recorded and the neural sources of the ERPs were reconstructed using standardised low resolution brain electromagnetic tomography (sLORETA). In the word type task, participants were faster on repeat trials when stimuli were presented in the RVF. In contrast, in the initial letter task participants were faster on repeat trials and in general more accurate after stimulus presentation in the LVF. In both tasks, no hemispheric asymmetries in reaction times were observed on switch trials. On the electrophysiological level, we observed a left lateralization of the N1 that was mediated by activation in the left extrastriate cortex as well as a greater positivity of the P3b after stimulus presentation in the RVF compared to the LVF that was mediated by activation in the superior parietal cortex. These results show that FCAs affect the neurophysiological correlates of executive functions related to task switching. The relation of neurophysiological and behavioural asymmetries is mediated by task complexity, with more complex tasks leading to more interhemispheric interaction and smaller left-right differences in behavioural measures. These findings reveal that FCAs are an important modulator of executive functions related to cognitive flexibility.  相似文献   

2.
Three experiments explore aspects of the dissociable neural subsystems theory of hemispheric specialisation proposed by Marsolek and colleagues, and in particular a study by [Deason, R. G., & Marsolek, C. J. (2005). A critical boundary to the left-hemisphere advantage in word processing. Brain and Language, 92, 251–261]. Experiment 1A showed that shorter exposure durations for lower-case words (13 ms) are associated with reduced right visual field (RVF) advantages compared with longer exposure durations (144 ms). Experiment 1B compared report accuracy for lower case and mixed case words at the same exposure duration (144 ms). The RVF advantage was reduced for mixed case words due to case alternation having more of an adverse effect in the RVF than in the LVF. Experiment 2 tested a different prediction of dissociable neural subsystems theory. Four-letter words were presented in mixed case in the LVF or RVF for 100 ms. They were preceded at the same location by a prime which could be in the same word in the same alternation pattern (e.g., FlAg–FlAg), the same word in the opposite alternation pattern (e.g., fLaG–FlAg), or an unrelated letter string in the same or opposite case alternation pattern (WoPk–FlAg or wOpK–FlAg). Relative to performance in the letter string prime conditions, which did not differ significantly between the two visual fields, there was more of an effect of word primes in the RVF than in the LVF. Importantly, the benefit of a word prime was the same whether the prime was in the same alternation pattern or was in the opposition alternation pattern. We argue that these results run contrary to the predictions of dissociable neural subsystems theory and are more compatible with theories which propose that a left hemisphere word recognition system is responsible for identifying written words, whether they are presented in the LVF or the RVF, and that letters are processed to an abstract graphemic level of representation before being identified by that system.  相似文献   

3.
This experiment assessed whether prior exposure to one visual stimulus could result in differential hemispheric responsiveness to a subsequent visual stimulus. The latency of saccadic orientation to a star‐shaped stimulus in the left or right visual field was assessed for 24 infants (mean age 22 weeks, SD 4.5) after exposure to either an upright or inverted facial pattern in the central visual field. The response to the lateral stimulus was equivalent in either visual field after exposure to the inverted facial pattern, but was significantly slower (p = 0.043) in the LVF (RH) than the RVF (LH) following presentation of the upright facial pattern. The outcome confirms that the processing of one visual stimulus may lead to differential hemispheric readiness to engage with a subsequent visual stimulus.  相似文献   

4.
Several studies have shown that laterally presented consonant–vowel–consonant (CVC) strings produce both superior performance, and a more wholistic processing strategy in the right visual field/left hemisphere (RVF/LHEM), and a more sequential strategy in the inferior left visual field (LVF). To determine whether these strategies are applied to other types of trigrams subjects (n= 30) were asked to identify consonant and symbol trigrams briefly projected unilaterally to the LVF or RVF, or bilaterally (the same trigram in both fields—BVF). A second group of subjects (n= 30) first practiced pronouncing consonant trigrams and then viewed them tachistoscopically. Both tasks yield RVF advantages. Symbols are processed more wholistically in the LVF, more sequentially in the RVF and in an intermediate pattern when presented bilaterally. In contrast, subjects seem to chunk letters as bigrams, and do so equally well in all fields, and visual field differences in strategies emerge for consonants only when they are pronounced. Pronounceability of consonant trigrams, assessed with ratings and vocal reaction times, was predicted by orthographic regularity. Since the RHEM has limited phonetic skills, but it, like the LHEM, is privy to information on orthographic regularity, the error pattern on consonant strings indicates non-phonetic processing, whereas the RVF wholistic strategy for consonant–vowel–consonant strings appears to reflect phonetic processing.  相似文献   

5.
We investigated hemispheric differences and inter-hemispheric transfer of facilitation in automatic semantic priming, using prime-target pairs composed of words of the same category but not associated (e.g. skirt-glove), and a blank-target baseline condition. Reaction time and accuracy were measured at short (300 ms) intervals between prime and target onsets, using a go/no-go task to discriminate between word or non-word targets. Reaction times were facilitated more for target words presented in the right visual field (RVF) compared to the left visual field (LVF), and targets presented in RVF were primed in both visual fields, whereas targets presented in LVF were primed by primes in the LVF only. These results suggest that both hemispheres are capable of automatic priming at very short stimulus onset asymmetries (SOA), but cross-hemisphere priming occurs only in the left hemisphere.  相似文献   

6.
Visual field effects in the discrimination of sine-wave gratings   总被引:2,自引:0,他引:2  
The time needed to decide whether the second of two successively presented sinusoidal gratings was of a higher or lower spatial frequency than the first was measured for spatial frequencies of 1, 2, 4, 8, and 12 cycles per degree (cpd) presented in either the left visual field (LVF) or right visual field (RVF). A LVF advantage was found for discriminating within the low-spatial-frequency range (i.e., 1 and 2 cpd), whereas a RVF advantage was found for discriminating within the high-spatial-frequency range (i.e., 4-12 cpd). These findings support the conclusion that hemispheric asymmetries in the processing of gratings arise when comparisons are made between the output of spatial-frequency channels.  相似文献   

7.
Behavioral studies have consistently reported striking differences in the impact of sentence-level information on the processing of words presented in the right (RVF) versus the left (LVF) visual field, with context effects apparent only for RVF items. The consistent lack of such effects in the LVF has been taken to mean that right hemisphere language comprehension is largely insensitive to message-level meaning. We used the functional specificity afforded by event-related potential measures to assess this claim. Target words completing strongly and weakly constraining sentence contexts, in which constraint arose at the sentence level rather than from lexical associations, were presented laterally in the LVF or RVF. Increased constraint significantly reduced N400 amplitudes with presentation in both VFs, with no differences in the timing or amplitude of these effects. These results are inconsistent with the view that the VF asymmetries found in behavioral measures reflect differential hemispheric capacities at the level of semantic analysis and integration, although VF-based differences on earlier components (P2) suggest asymmetries in the impact of sentential context on perceptual aspects of word processing in the two hemispheres.  相似文献   

8.
The relationship between local/global and high/low spatial-frequency processing in hemispheric asymmetries was explored. Subjects were required to judge the orientation of a high- or low-spatial-frequency component of a compound grating presented in the left visual field (LVF) or right visual field (RVF). In Experiment 1, attention was focused on one or the other component. A signal detection analysis indicated that sensitivity (d′) to the high-spatial-frequency target was reduced more by the presence of the low-spatial-frequency component when both were presented in the LVF rather than in the RVF. In Experiment 2, subjects determined whether a target orientation was present, independent of spatial frequency at only a single level (i.e., at the high- or low-spatial-frequency level), as opposed to both or neither level. An RVF/LH (left hemisphere) advantage was found when the decision was based on the orientation of the high-frequency component. The asymmetrical influence of visual field of presentation and spatial frequency upon sensitivity is discussed in terms of hemispheric differences in the magnitude of inhibition between spatial-frequency channels and in the role of transient channel activity to capture and direct higher order attentional processes.  相似文献   

9.
We examined hemispheric specialization in a lateralized Stroop facial identification task. A 2 (presentation side: left or right visual field [LVF or RVF])x2 (picture emotion: happy or angry)x3 (emotion of distractor word: happy, angry, or blank) factorial design placed the right hemispheric specialization for emotional expression processing and the left hemispheric specialization for verbal processing in conflict. Faces (from ) and emotion words were briefly displayed, and participants responded with keypresses corresponding to the picture emotion. As predicted, greater Stroop interference in identification accuracy was found with incongruent displays of facial expression in the LVF and emotion words in the RVF, and females exhibited less Stroop interference. Reaction times were moderated by emotion and visual field.  相似文献   

10.
The notion that visual laterality patterns may be attributable to attentional allocation rather than hemispheric specialisation was examined in three experiments. In Experiment I, high verbal ability subjects were found to be less lateralised on a letter name match task than low verbals. In Experiment II, stimulus probability was shown to affect laterality patterns for name but not for physical matches. Again, low verbals were affected more than highs. Experiment III produced results identical to those of Experiment II although, in the latter experiment, visual fields were defined vertically rather than horizontally from the midline. Together, these results support the following generalisations: (1) visual asymmetries have their locus in a post-perceptual information processing stage; (2) visual asymmetries may be altered by manipulating stimulus probability; (3) verbal ability differences in laterality may not reflect neuroanatomical differences but merely cognitive capacity and (4) it may be unnecessary to invoke differential hemispheric specialisation in order to account for visual lateral asymmetries.  相似文献   

11.
This study examined predictions based upon the right hemisphere (RH) model, the valence–arousal model, and a recently proposed integrated model (Killgore & Yurgelun-Todd, 2007) of emotion processing by testing immediate recall and recognition memory for positive, negative, and neutral verbal stimuli among 35 right-handed women. Building upon methodologies of previous studies, we found that words presented to the right visual field/left hemisphere (RVF/LH) were recalled and recognized more accurately than words presented to the left visual field/right hemisphere (LVF/RH), and we found significant valence by visual field interactions. Some findings were consistent with one of the models evaluated whereas others were consistent with none of the models evaluated. Our findings suggest that an integration of the RH and valence–arousal models may best account for the findings with regard to hemispheric lateralization of memory for emotional stimuli.  相似文献   

12.
Evoked potentials to laterally presented stimuli were collected from left and right tempero-parietal sites during performance of two visual half-field tasks, lexical decision, and line orientation discrimination. Reaction time and accuracy data were simultaneously collected. The behavioral data indicated the development of a right field advantage for the lexical decision task as a function of practice. A principal components analysis revealed three independent evoked potential components which displayed task-dependent hemispheric asymmetries. Multiple regression analyses revealed that visual half-field asymmetries in response accuracy were closely related to hemispheric asymmetries on several independent evoked response components. Subject's scores on independent tests of verbal reasoning and spatial relations were also found to be closely related to hemispheric asymmetry on several independent evoked response components. These data support a multidimensional concept of cerebral specialization. They also suggest that visual field asymmetries reflect the confluence of several underlying processes which have independent lateralization distributions across the population. In general, the results underscore the need for further research on the nature of the relationship between cerebral and perceptual asymmetries.  相似文献   

13.
In two experiments a name and a face (each male or female) were simultaneously flashed to either the same or opposite visual fields (left or right), for matching congruent (same sex) or incongruent (opposite sex), to test the predictions of various models of hemispheric specialization. While overall best performance occurred with a face in the left visual field (LVF) and a name in the right visual field (RVF), and worst with the opposite configuration, the general pattern of results was incompatible with either a direct access model or an activational/attentional account. The results were, however, most compatible with the predictions of a semispecialized hemispheres account, whereby cerebral asymmetries are seen as relative rather than absolute, either hemisphere being capable of processing either kind of material (verbal or visuospatial), but to different levels of efficiency. However, despite the fact that the stimulus materials had previously been shown to produce stable and consistent lateral asymmetries in the predicted directions when presented in isolation, in the composite, integrative matching task the position of the name seemed to be the major determinant of the resultant asymmetries. It would seem therefore that when such stimuli are to be cross matched, either left hemisphere (language) processes somehow dominate right hemisphere (visuospatial) processing (though not in the way that would be predicted by a simple activational/attentional account) or the left hemisphere's greater capacity predominates.  相似文献   

14.
The purpose of this study was to examine the effects of a 12 month exercise program on lower limb movement variability in patients with peripheral arterial disease (PAD). Participants (n = 21) with an appropriate history of PAD and intermittent claudication (IC) volunteered for this study and were randomly allocated to either a control group (CPAD–IC) (n = 11), which received normal medical therapy and a treatment group (TPAD–IC) (n = 10), which received normal medical therapy treatment and a 12 month supervised exercise program. All participants underwent 2D joint angular kinematic analysis during normal walking to assess lower limb movement variability and walking speed. Between-group differences were analyzed via mixed measures ANOVA. The 12 month supervised exercise program made no significant impact on the lower limb movement variability or walking speed of the TPAD–IC group as determined by either intralimb joint coordination or single joint analysis techniques. Long term supervised exercise programs do not appear to influence the lower limb movement variability of PAD–IC patients.  相似文献   

15.
This behavioral study aimed at assessing the effect of two variables on the degree of hemispheric specialization for language. One of them was the grapho-phonemic translation (transformation) (letter-sound mapping) and the other was the participants’ gender. The experiment was conducted with healthy volunteers. A divided visual field procedure has been used to perform a phoneme detection task implying either regular (transparent) grapho-phonemic translation (letter-sound mapping consistency) or irregular (non-transparent) grapho-phonemic translation (letter-sound mapping inconsistency). Our results reveal a significant effect of grapho-phonemic translation on the degree of hemispheric dominance for language. The phoneme detection on items with transparent translation (TT) was performed faster than phoneme detection on items with non-transparent translation (NTT). This effect seems to be due to faster identification of TT than NTT when the items were presented in the left visual field (LVF)-right hemisphere (RH). There was no difference between TT and NTT for stimuli presented in the right visual field (RVF)-left hemisphere (LH). This result suggests that grapho-phonemic translation or the degree of transparency can affect the degree of hemispheric specialization, by modulating the right hemisphere activity. With respect to gender, male participants were significantly more lateralized than female participants but no interaction was observed between gender and degree of transparency.  相似文献   

16.
The effect of acquisition of reading on visual field asymmetries for verbal material was investigated in school-age children. Contrary to the expectation that acquisition of differential scanning tendencies will operate on perceptual asymmetries, it was found that right visual field superiority which was independent of scanning direction appeared at the fifth grade. This, and the presence of slight left field superiority at the age when reading is initially acquired, suggests that hemispheric dominance and its attributes, parallel and sequential pattern recognition processes, is the major factor which determines the field preference for verbal material.  相似文献   

17.
Previous studies indicate that the right hemisphere (RH) has a unique role in maintaining activation of metaphoric single word meanings. The present study investigated hemispheric asymmetries in comprehending metaphoric word meanings within a sentence context. Participants were presented with incomplete priming sentences followed by (literally) true, false, or metaphoric lateralized target words and were asked to decide whether each sentence is literally true or false. Results showed that responses to metaphoric sentences were slower and less accurate than to false sentences when target words were presented to the right visual field (RVF)-LH as well as to the left visual field (LVF)-RH. This suggests that the understanding of lexical metaphors within a sentence context involves LH as well as RH processing mechanisms and that the role of each hemisphere in processing nonliteral language is flexible and may depend on the linguistic task at hand.  相似文献   

18.
Three experiments were concluded to investigate the involvement of the two cerebral hemispheres in processing faces. Perceptual discrimination of pairs of faces was equally speedy overall when the stimuli were presented in the right visual field (RVF) or left visual field (LVF). For faces differing in one or two features, however, a qualitatively different pattern of results was obtained for the two visual fields, and an RVF advantage emerged when the difference lay in the upper part of the faces (Experiment 1). An examination of the discriminability of the facial features from which the faces were constructed (Experiment 2) showed that the processes involved in RVF comparisons of faces were not dependent on the saliency of the features but, rather, followed a top-to-bottom serial analysis of the stimuli; the speed of the processing involved in LVF presentations was a function of the degree of similarity of the different comparison faces. Evidence for a serial type of comparison faces were used (Experiment 3). It was concluded that even though comparisons were equally speedy overall in LVF and RVF presentations, qualitatively different processes take place in the two hemispheres, which prove competent at processing faces, each in its own way. Some methodological problems inherent in tachistoscopic studies are discussed, and it is proposed that the quality of the stimulus representation achieved or required for cognitive processing may be determinant in the emergence of functional hemispheric asymmetries.  相似文献   

19.
Attentional factors in visual field asymmetries.   总被引:2,自引:0,他引:2  
Over the past 30 years, numerous studies have reported left/right asymmetries in visual field performance, with performance generally superior in the right visual field for verbal tasks and in the left visual field for spatial tasks. These asymmetries parallel those found in neurological studies of hemispheric specialization. Consequently, many investigators have concluded that visual hemifield differences are primarily a reflection of the functional differences between the two cerebral hemispheres. However, alternative explanations proposing that visual field effects are dependent on other factors such as inadequate fixation, eye movements during presentation, postexposural scanning, and attentional biases have been offered. The potential impact of each of these factors on visual field differences are reviewed and discussed. Evidence is provided suggesting that attention and hemispheric functional differences interact to produce the magnitude and direction of visual field differences.  相似文献   

20.
Despite the fact that hemispheric asymmetry of attention has been widely studied, a clear picture of this complex phenomenon is still lacking. The aim of the present study was to provide an efficient and reliable measurement of potential hemispheric asymmetries of three attentional networks, i.e. alerting, orienting and executive attention. Participants (N=125) were tested with the Lateralized Attention Network Test (LANT) that allowed us to investigate the efficiency of the networks in both visual fields (VF). We found a LVF advantage when a target occurred in an unattended location, which seems to reflect right hemisphere superiority in control of the reorienting of attention. Furthermore, a LVF advantage in conflict resolution was observed, which may indicate hemispheric asymmetry of the executive network. No VF effect for alerting was found. The results, consistent with the common notion of general right hemisphere dominance for attention, provide a more detailed account of hemispheric asymmetries of the attentional networks than previous studies using the LANT task.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号