首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A pointing movement is executed faster when a subject is allowed to stop at the first target than when the subject has to proceed to a second target ("one-target advantage"). Our hypothesis was that this is because the impact at the target helps to stop the finger when the finger does not have to proceed to a second target. This hypothesis would predict that the horizontal force at contact with the first target should be larger when there is only one-target. Modelling smooth movements with larger forces at contact using a minimum-jerk model, shows that the peak velocity is slightly higher and it occurs later during the movement when there is only one target. Although the one-target advantage was present in our experiment, the horizontal force at contact in the one-target condition was not larger than in the two-target condition. The time of the maximum velocity did not differ, but the maximum velocity was higher in the one-target condition. Thus our hypothesis is rejected, favouring a non-mechanical explanation of the one-target advantage.  相似文献   

2.
Two experiments were conducted to examine the role of vision in the execution of a movement sequence. Experiment 1 investigated whether individual components of a sequential movement are controlled together or separately. Participants executed a rapid aiming movement to two targets in sequence. A full vision condition was compared to a condition in which vision was eliminated while in contact with the first target. The size of the first target was constant, while the second target size was varied. Target size had an influence on movement time and peak velocity to the first target. Vision condition and target size did not affect the time spent on the first target. These results suggest that preparation of the second movement is completed before the first movement is terminated. Experiment 2 examined when this preparation occurred. A full vision condition was compared to a condition in which vision was occluded during the flight phase of the first movement. Movement initiation times were shorter when vision was continually available. Total movement time was reduced with vision in two-target condition, but not in a control one-target condition. The time spent on the first target was greater when vision was not available during the first movement component. The results indicate that vision prior to movement onset can be used to formulate a movement plan to both targets in the sequence [Fischman & Reeve (1992).  相似文献   

3.
The present experiment examined the one-target advantage (OTA) with regard to saccadic eye movements. The OTA, previously found with manual pointing responses, refers to the finding that movements are executed faster when the limb is allowed to stop on the target compared to the situation where it has to proceed and hit a second target. Using an adapted limb movement OTA task, saccades of 5 degrees and 15 degrees were made to (a) a single target (one-target), (b) one target and immediately to another target without a change in direction (two-target-extension), and (c) one target and immediately back to the start location (two-target-reversal). Unlike manual movements, the movement times for the initial saccade in the two-target-extension condition were not prolonged compared to either of the other two conditions. Moreover, this pattern of results was found for both the shorter and longer amplitude saccades. The results indicate that the OTA does not occur in the oculomotor system and therefore is not a general motor control phenomenon.  相似文献   

4.
Two experiments describe the effects of extended practice on the development of motor control programs for simple target-striking responses. In Experiment 1,400 right-hand trials of simple one-target and two-target striking tasks were performed. In Experiment 2,600 practice trials were given. Overall reaction time (RT) was faster for the one-target condition in both experiments, supporting a response complexity effect. Movement time (MT) for both conditions improved linearly with practice, suggesting that development of the motor control programs was still occurring. Subjects then transferred to a three-target condition for 50 trials, performing the transfer task with the right hand in Experiment 1, and with right and left hands in Experiment 2. Transfer to the three-target conditions produced execution errors in the form of failure to contact the second target and repetitive tapping on the third target. These results suggest that extensive practice may serve to firmly entrench a response sequence, making it difficult to implement a similar, but unique, motor control program. An interpretation in terms of automaticity and enhanced priming of behavioral and neural pathways is offered to account for these results.  相似文献   

5.
Movement times to the first target in a 2-target sequence are typically slower than in 1-target aiming tasks. The 1-target movement time advantage has been shown to emerge regardless of hand preference, the hand used, the amount of practice, and the availability of visual feedback. The authors tested central and peripheral explanations of the 1-target advantage, as postulated by the movement integration hypothesis, by asking participants to perform single-target movements, 2-target movements with 1 limb, and 2-target movements in which they switched limbs at the first target. Reaction time and movement time data showed a 1-target advantage that was similar for both 1- and 2-limb sequential aiming movements. This outcome demonstrates that the processes underlying the increase in movement time to the 1st target in 2-target sequences are not specific to the limb, suggesting that the 1-target advantage originates at a central rather than a peripheral level.  相似文献   

6.
When two sequential targets (T1 and T2) are presented within about 600 msec, perception of the second target is impaired. This attentional blink (AB) has been studied by means of two paradigms: rapid serial visual presentation (RSVP), in which targets are embedded in a stream of central distractors, and the two-target paradigm, in which targets are presented eccentrically without distractors. We examined the role of distractors in the AB, using a modified two-target paradigm with a central stream of task-irrelevant distractors. In six experiments, the RSVP stream of distractors substantially impaired identification of both T1 and T2, but only when the distractors shared common characteristics with the targets. Without such commonalities, the distractors had no effect on performance. This points to the subjects' attentional control setting as an important factor in the AB deficit and suggests a conceptual link between the AB and a form of nonspatial contingent capture attributable to distractor processing.  相似文献   

7.
Previous research has demonstrated that movement times to the first target in sequential aiming movements are influenced by the properties of subsequent segments. Based on this finding, it has been proposed that individual segments are not controlled independently. The purpose of the current study was to investigate the role of visual feedback in the interaction between movement segments. In contrast to past research in which participants were instructed to minimize movement time, participants were set a criterion movement time and the resulting errors and limb trajectory kinematics were examined under vision and no vision conditions. Similar to single target movements, the results indicated that vision was used within each movement segment to correct errors in the limb trajectory. In mediating the transition between segments, visual feedback from the first movement segment was used to adjust the parameters of the second segment. Hence, increases in variability that occurred from the first to the second target in the no vision condition were curtailed when visual feedback was available. These results are discussed along the lines of the movement constraint and movement integration hypotheses.  相似文献   

8.
When a visual display contains two targets, both of which require the same response, reaction times (RTs) are faster than when only one target appears. This effect has previously been obtained regardless of whether the redundant targets are the same or different in shape, and in at least one set of two-target experiments, the redundancy gains have been larger for different targets (Grice & Reed, 1992). Experiments with two different targets have also revealed violations of the race-model inequality, suggesting that redundant targets coactivate the response (Miller, 1982). The present paper reexamines both of these findings, because both appear to be inconsistent with the interactive race model (Mordkoff & Yantis, 1991). Experiment 1 shows that the race-model inequality is not violated when the experimental design is free of biased contingencies; Experiment 1 also provides evidence that target preferences may artifactually produce the RT advantage fordifferent- oversame-target trials. Experiment 2, however, shows that the race-model inequality is violated when the frequencies of single- and redundant-target displays are equated (without introducing any biased contingencies), implying that the interactive race model cannot account for the results of experiments involving more than one type of target. Alternative loci for coactivation are briefly discussed.  相似文献   

9.
Human activity contains sequential dependencies that observers may use to structure a task environment (e.g., the ordering of steps when tying shoes or getting into a car). Two experiments investigated how people take advantage of sequential structure to understand activity and respond to behaviorally relevant events. Participants monitored animations of simplified human movement to identify target hand gestures. In the first experiment, participants were able to use predictive sequential dependencies to more quickly identify targets. In addition, performance was best at the point in time that followed the sequence. However, the second experiment revealed that how sequential structure affects detection depends on whether the sequence predicts the timing of target events. In all cases, sequence learning was observed without participants’ awareness of the sequential dependencies. These results suggest that human activity sequences can be learned without awareness and can be used to adaptively guide behavior.  相似文献   

10.
Two reliable findings in discrete, rapid aimed movements are that reaction time increases with decrease in target diameter (for the short-length movements), and reaction time is not affected by movement length [Journal of Experimental Psychology, Human Perception and Performance 104 (2) (1975) 147]. Participants normally use a short stylus (SS) to tap targets located on either side of a central (aligned with body midline) start-point with no restrictions imposed on the initial posture of the limb or segmental recruitment except as determined by movement conditions. Thus, the effects of movement parameters on reaction time in previous work are potentially confounded with the effect of initial posture of the limb at the start-point, along with order and amount of the contribution of segments recruited in response execution. Two experiments were performed to resolve the confounding between initial posture and recruitment of limb segments. In the first experiment a conventional stylus (pen-like) was employed and the starting position of the limb was aligned either with the body midline or with the participant's right shoulder. The effect of starting position on reaction time was not significant. In the second experiment the starting position was in line with the right shoulder. Two groups participated. One group used a conventional stylus. For the second group a modified (lengthened) stylus was used that permitted initial limb posture and number of limb segments recruited to be held constant across an extended range of movement lengths. When similar sets of limb segments were used, reaction time increased with decreasing movement length and diminishing target diameter. These findings suggest that uncontrolled initial limb posture, uncontrolled order of joint(s) recruitment, and the subsequent inclusion of reaction time values from incompatible sources may, in the final analysis, have confounded previous work investigating movement amplitude and target diameter effects on reaction time.  相似文献   

11.
《人类行为》2013,26(3):207-228
The effect of an unexpected mechanical block on the control of multilimbaiming movements was studied in two experiments. In the first experiment, subjects (N = 10) attempted to push two hand levers 9 cm forward in 200 ms without vision. In the second experiment, subjects (N = 9) attempted to push hand levers and foot pedals forward 9 cm in 200 ms. After a practice period, five attempts at blocking the limb movements were made on the left lever and the right lever (Experiment 1) and on both levers (Experiment 2 only) during randomly selected trials. When one hand was blocked in Experiment 1, the other hand undershot the target on the first blocked trial, with slight reductions in movement time. When one hand was blocked in Experiment 2, the contralateral limb undershot the target on all blocked trials, but this had little effect on the lower limbs. The lower limbs undershot the target when both up- per limbs were blocked. Discrete movement corrections were made on more of the blocked trials relative to the unblocked control trials. Interlimb correlations decreased following the block, suggesting that subjects dissociated the limbs in an effort to minimize the effect of the block.  相似文献   

12.
Interactions between fingers and numbers have been reported in the existing literature on numerical cognition. The aim of the present research was to test whether hand interference movements might have an impact on children performance in counting and basic arithmetic problem solving. In Experiment 1, 5-year-old children had to perform both a one-target and a two-target counting task in three different conditions: with no constraints, while making interfering hand movements or while making interfering foot movements. In Experiment 2, first and fourth graders were required to perform addition problems under the same control and sensori-motor interfering conditions. In both tasks, the hand movements caused more disruption than the foot movements, suggesting that finger-counting plays a functional role in the development of counting and arithmetic.  相似文献   

13.
This study extended earlier work by showing spatial assimilations in sequential bimanual and unimanual movements separated by 1.5-3.5 s. In Experiments 1 and 2, 30 right-handed participants (18-22 years of age) made rapid single and bimanual lever reversals of 20 degrees and 60 degrees assigned to 1.5, 2.5, or 3.5 s intermovement interval groups. Participants self-timed the intermovement interval in the first experiment, but it was provided in the second experiment using separate auditory stimuli. In the third experiment, participants performed both the 20 degree and 60 degree movement with the same hand. In all experiments, the shorter-distance limb overshot and the longer-distance limb undershot the targets in both bimanual and unimanual sequential movements relative to single movements in all three intermovement interval groups, particularly in the non-dominant left limb. The results suggest that assimilation effects in sequential movements are caused by command interactions at the planning level, but the effects are reduced by practice.  相似文献   

14.
Visual masking plays two roles in the attentional blink   总被引:4,自引:0,他引:4  
When two targets are displayed in rapid visual sequence and masked by trailing patterns, identification accuracy is nearly perfect for the first target but follows a U-shaped pattern over temporal lag for the second target. Three experiments examined the role of visual masking in this attentional blink. Experiment 1 compared integration and interruption masks for both targets. Although either mask was effective in producing the blink when applied to the first target, only the interruption mask was effective when applied to the second target. Experiment 2 showed that integration masking of the second target was ineffective over a wide range of accuracy levels. Combining the two forms of masking in Experiment 3 confirmed the dissociation: A combined mask and only a main effect on accuracy for the first target, whereas it produced a qualitatively different pattern over temporal lag for the second target. These results suggest that representations of the target are substituted in consciousness by that of the interruption mask when visual attention is preoccupied.  相似文献   

15.
Gronlund ( 2005 ) proposed that one factor leading to a sequential line-up advantage could be the greater likelihood of recollecting distinctive information about a perpetrator when using a sequential line-up. Since then questions have been raised about the robustness of the sequential advantage and the possible moderating role of line-up fairness and suspect position. We manipulated these factors as well as suspect/target distinctiveness in two experiments. A sequential advantage occurred only after encoding a distinctive target, both for biased line-ups (Experiment 1) and fair line-ups (Experiment 2). Remember-Know results were consistent with the greater use of a recall-to-reject strategy in target-absent sequential line-ups. This provided support for the first process-based explanation of the sequential line-up advantage. No consistent position effects were found, but this might be due to the line-up recognition paradigm used, in which each participant viewed a line-up for each of several targets. Theory-based explorations of eyewitness identification are necessary to continue to delineate the underpinnings of the sequential line-up advantage.  相似文献   

16.
In order to infer the temporal relations among iconic, short-term, and long-term components of visual memory, random dot patterns were used as memory stimuli in six recognition memory experiments. Experiment 1 demonstrated that recognition was still above chance for intervals up to 12 s. In Experiments 2 and 3, an intervening masking stimulus was found to be effective only if presented within the first 500 ms of the interval. The remaining three experiments employed a two-target task, with the second target replacing the masking stimulus. Recognition performance with the second target was the same as that in a single-target task, whereas performance with the first target was almost at chance level. Increasing the interval between the targets resulted in a gradual improvement in the recognition of the first target.  相似文献   

17.
Spatial working memory can maintain representations from vision, hearing, and touch, representations referred to here as spatial images. The present experiment addressed whether spatial images from vision and hearing that are simultaneously present within working memory retain modality-specific tags or are amodal. Observers were presented with short sequences of targets varying in angular direction, with the targets in a given sequence being all auditory, all visual, or a sequential mixture of the two. On two thirds of the trials, one of the locations was repeated, and observers had to respond as quickly as possible when detecting this repetition. Ancillary detection and localization tasks confirmed that the visual and auditory targets were perceptually comparable. Response latencies in the working memory task showed small but reliable costs in performance on trials involving a sequential mixture of auditory and visual targets, as compared with trials of pure vision or pure audition. These deficits were statistically reliable only for trials on which the modalities of the matching location switched from the penultimate to the final target in the sequence, indicating a switching cost. The switching cost for the pair in immediate succession means that the spatial images representing the target locations retain features of the visual or auditory representations from which they were derived. However, there was no reliable evidence of a performance cost for mixed modalities in the matching pair when the second of the two did not immediately follow the first, suggesting that more enduring spatial images in working memory may be amodal.  相似文献   

18.
The attentional blink refers to a deficit in reporting a second target that follows a first target within a few hundred milliseconds, when both targets occur in a sequence of distractors shown serially at rates of about 10 items per second. In four experiments, phonological similarity of post-Target 1 distractors impaired dual target report within the interval in which the attentional blink occurs. Similarity of letter targets had a smaller, less reliable effect on performance. Phonological similarity of letter distractors did not affect single target identification (Experiment 3), but it continued to impair dual target report (Experiment 5), even when the targets belonged to a different category—namely, digits. The results demonstrated that, not only targets, but also distractors are encoded phonologically, despite the fact that distractors are irrelevant and never have to be reported.  相似文献   

19.
The attentional blink refers to a reduction in accuracy that occurs when observers are required to identify the second of two rapidly sequential targets. Even when the second target cannot be reported, however, it is still capable of priming the response to a subsequent related item. At issue in the present work was whether this priming is attributable mainly to conscious or unconscious processes. To answer this question, we used an exclusion procedure that permitted an assessment of the relative dominance of conscious and unconscious processes. The results showed that second targets that are identified incorrectly are nonetheless processed extensively outside of awareness. Moreover, this processing is sufficient to prime a subsequent response for at least 1 s after the onset of the prime.  相似文献   

20.
The reports by Fitts and Peterson [J. Exp. Psychol. 67(2) (1964) 103-113] and Klapp [J. Exp. Psychol. Hum. Percept. Perform. 104(2) (1975) 147-153] concerning the effects of movement amplitude and target diameter on reaction time present conflicting results. Fitts and Peterson reported that reaction time increased when movement amplitude was lengthened. Klapp reported an interaction in which target diameter effect on reaction time was moderated by movement length: for small targets, reaction time decreased with increasing movement length but reaction time remained unchanged (or increased modestly) when target diameter was large. Two experiments were conducted to replicate and examine the inconsistency in the reaction time results. For both experiments movement time results were in agreement with the predictions of Fitts' law. However, the results for reaction time were mixed: support was obtained for Klapp (1975) but not for Fitts and Peterson (1964). Further analysis identified several potential variables that could have influenced reaction time and explained the different effects on reaction time reported by Fitts and Peterson (1964) and Klapp (1975). The potential variables could include: limb posture at the start of a response; number of limb segments required to perform the task; and the effect of pooling reaction time data from targets located right and left of the start point, and from near and far targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号