首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The authors examined the relationship between peak velocity of a discrete horizontal elbow flexion movement in which the hand path was curvilinear and premovement modulation of precision grip force. The velocity of the movements of 7 participants was varied from maximal velocity to a velocity that required several seconds to reach a target. An object instrumented with force transducers for the forefinger and thumb measured precision grip force. There was a positively accelerating quadratic relationship between grip force change before movement and peak velocity of the ensuing limb movement. On some low-velocity trials, premovement grip force modulation reflected a net decrease. In contrast, high-velocity trials were preceded by net increases in grip force. Using cluster analysis, the authors classified grip forces in low-velocity movements as an empirically distinct set of entities from grip forces in high-velocity movements. The cluster of high-value grip forces suggested an anticipatory strategy that allowed participants a large safety margin in grip force to avoid object slip on movement initiation. The cluster of low-value grip forces at movement initiation suggested a second anticipatory strategy in which participants changed grip force very little, perhaps to increase the ability of proprioceptors in the hand to sense force changes. Those findings suggest that modulation of grip force before initiation of movements in which the hand path is curvilinear may be governed by two distinct velocity-dependent anticipatory strategies.  相似文献   

2.
The authors investigated whether 5- to 10-year-old children (N = 75) differ from adults (N = 12) in the developmental course of distance scaling and the adaptations to the inability to see the hand during prehension movements. The children reached under a surface and grasped and lifted an object suspended through it. All children scaled velocity appropriately for movement distance, both with and without sight of the hand. However, 5- to 6-year-old children did not increase grip aperture with increased distance, whereas older children and adults did. The older children and adults spent longer after peak deceleration when they could not see the hand, and maximum grip aperture (MGA) was larger, providing an increased safety margin. Children aged 5 to 6 spent the same amount of time between peak deceleration and grasp, whether or not they could see the hand, and they failed to increase MGA when they could not see the hand. Prehension in the younger children differed from that of older children in two ways: The younger children did not integrate reach and grasp over different distances and did not use visual information about hand position to optimize accuracy.  相似文献   

3.
Young children's strategies were evaluated as they grasped and used objects. Spoons containing food and toys mounted on handles were presented to 9-, 14-, and 19-month-old children with the handle alternately oriented to the left and right. The alternating orientations revealed strategies that the children used for grasping items. Younger children usually reached with their preferred hand, disregarding the item's orientation. In the case of the spoon, this strategy produced awkward grasps that had to be corrected later. Older children anticipated the problem, alternated the hand used, and achieved an efficient radial grip (i.e., handle grasped with base of thumb toward food or toy end) for both orientations. A model of the development of action-selection strategies is proposed to illustrate planning in children younger than 2 years.  相似文献   

4.
How do children learn to write letters? During writing acquisition, some letters may be more difficult to produce than others because certain movement sequences require more precise motor control (e.g., the rotation that produces curved lines like in letter O or the pointing movement to trace the horizontal bar of a T). Children of ages 6–10 (N = 108) wrote sequences of upper-case letters on a digitizer. They varied in the number of pointing and rotation movements. The data revealed that these movements required compensatory strategies in specific kinematic variables. For pointing movements there was a duration decrease that was compensated by an increase in in-air movement time. Rotation movements were produced with low maximal velocity but high minimal velocity. At all ages there was a global tendency to keep stability in the tempo of writing: pointing movements exhibited a duration trade-off whereas rotation movements required a trade-off on maximal and minimal velocity. The acquisition of letter writing took place between ages 6 and 7. At age 8 the children shifted focus to improving movement control. Writing automation was achieved around age 10 when the children controlled movement duration and fluency. This led to a significant increase in writing speed.  相似文献   

5.
People will often grasp an object with an uncomfortable initial grasp if this affords more comfort at the end of the movement. The authors' primary objective was to examine whether grasp planning is influenced by precision demands at the start and end of the movement. Twenty right-handed individuals performed a unimanual grasping and placing task in which the precision requirements at the start and end of the movement were either identical (low initial and final precision, high initial and final precision) or different (low initial and high final precision, high initial and low final precision). The major finding to emerge was the presence of individual differences. 50% of participants changed their initial grasps based on the precision requirements of the task, and were more likely to satisfy end-state comfort when the final precision requirements were high than when they were low. In contrast, 50% of participants generally planned their movements to satisfy end-state comfort (regardless of precision requirements). The authors hypothesized that the former group of participants was sensitive to the precision demands of the task, and participants planned their grips in accordance with these demands. In contrast, the latter group of participants reduced the cognitive costs by using previously successful grasp plans.  相似文献   

6.
In two studies, children between 5 and 10 years of age were asked to reach to grasp an object without sight of the hand during the movement. The oldest children and adults were faster when they could see the hand and increased maximum grip aperture when they could not see the hand. The 10-year-olds were less able to integrate grasp and lift than adults when they could see their hands. Children aged 5 and 6 showed no increase in movement time when they could not see the hand and did not adapt maximum grip aperture to lack of sight. These effects remained when children were encouraged to reach for and lift the target as quickly as possible. The results indicate that younger children did not give preference to vision in the control of prehension, while older children used visual feedback to improve efficiency. Dependence on sight of the hand for the control of prehension does not simply decrease with age, but it may be integrated into an anticipatory control strategy where it contributes to the efficiency of control.  相似文献   

7.
A number of researchers (e.g. Kerr, 1978; Walsh, Russell, Imanaka, & James, 1979) have previously demonstrated interference between location and distance information in motor short-term memory. This interference manifests itself in a characteristic pattern of undershooting and overshooting, with reproduction movement location being drawn in the direction of criterion movement distance and, conversely, the distance of reproduction movements being influenced by the terminal location of the criterion movement. We investigated the effects of different cognitive strategies upon the appearance of this location-distance interference during the reproduction of movement location (Experiment 1) and distance (Experiments 2 and 3) in a linear arm positioning task. Experiment 1 compared performance in location reproduction between two strategy groups differing in the availability of explicit information about the change in starting position. The characteristic undershooting-overshooting interference pattern was observed for the group without the explicit information about the change in starting position but disappeared for the group in which explicit information about the change in starting position was provided. Experiment 2 examined the systematic undershooting-overshooting pattern in distance reproduction for a location strategy (involving some extrapolation of the start and end locations), a counting strategy, and a distance sense strategy (involving the use of visual imagery). The systematic response bias pattern disappeared when the subjects used a location strategy but was clearly observed for the subjects using the other two strategies. This finding was generally confirmed by Experiment 3, which showed a typical undershooting-overshooting pattern in distance reproduction for a counting/distance sense strategy but not for two location strategies (a general location and an explicit location strategy). The location strategies differed in the availability of explicit information about starting and end locations for both the criterion and reproduction movements. The results from these three experiments indicate that explicit information about the start andlor end locations prevents the usual interference between location and distance information from arising in movement reproduction. The notions of automatic and controlled processing and cerebral hemispheric specialization are discussed as potential explanations of these results and of the interference typically observed in motor short-term memory between distance and location information.  相似文献   

8.
The authors investigated whether older adults (n = 16; mean age = 65 years) increased grip force to compensate for load force fluctuations during up and down movements more than young adults did (n = 16; mean age = 24 years) and whether older and young adults exhibited similar adaptation of grip force to alterations in friction associated with changes in object surface texture. As previously reported, older adults used a higher level of grip force than young adults during static holding. Increased grip force was observed in the older group during movement. The increase was appropriate to the lower coefficient of friction estimated for the older group. In both groups, grip force was greater with a smooth than with a rough surface (the latter having the higher coefficient of friction) during static holding and during movement. Moreover, grip force modulation was equally well synchronized with load force fluctuation during movement in the two groups. The authors concluded that changes in organization of grip force with age are well adapted to change in hand-object interface properties. Elevated grip force in older adults does not necessarily signify a fundamental change in synchronizing grip force modulation with load force fluctuation.  相似文献   

9.
The authors investigated whether older adults (n = 16; mean age = 65 years) increased grip force to compensate for load force fluctuations during up and down movements more than young adults did (n = 16; mean age = 24 years) and whether older and young adults exhibited similar adaptation of grip force to alterations in friction associated with changes in object surface texture. As previously reported, older adults used a higher level of grip force than young adults during static holding. Increased grip force was observed in the older group during movement. The increase was appropriate to the lower coefficient of friction estimated for the older group. In both groups, grip force was greater with a smooth than with a rough surface (the latter having the higher coefficient of friction) during static holding and during movement. Moreover, grip force modulation was equally well synchronized with load force fluctuation during movement in the two groups. The authors concluded that changes in organization of grip force with age are well adapted to change in hand-object interface properties. Elevated grip force in older adults does not necessarily signify a fundamental change in synchronizing grip force modulation with load force fluctuation.  相似文献   

10.
Adults are proficient at reaching to grasp objects of interest in a cluttered workspace. The issue of concern, obstacle avoidance, was studied in 3 groups of young children aged 11-12, 9-10, and 7-8 years (n=6 in each) and in 6 adults aged 18-24 years. Adults slowed their movements and decreased their maximum grip aperture when an obstacle was positioned close to a target object (the effect declined as the distance between target and obstacle increased). The children showed the same pattern, but the magnitude of the effect was quite different. In contrast to the adults, the obstacle continued to have a large effect when it was some distance from the target (and provided no physical obstruction to movement).  相似文献   

11.
Emerging evidence highlights that arm movements exert a substantial and functionally relevant contribution on quiet standing balance control in young adults. Ageing is associated with “non-functional” compensatory postural control strategies (i.e., lower limb co-contraction), which in turn, may increase the reliance on an upper body strategy to control upright stance. Thus, the primary purpose of this study was to compare the effects of free versus restricted arm movements on balance performance in young and older adults, during tasks of different difficulty. Fifteen young (mean ± SD age; 21.3 ± 4.2 years) and fifteen older (mean ± SD age; 73.3 ± 5.0 years) adults performed bipedal, semi-tandem and tandem balance tasks under two arm position conditions: restricted arm movements and free arm movements. Centre of pressure (COP) amplitude and frequency were calculated as indices of postural performance and strategy, respectively. Especially in older adults, restriction of arm movement resulted in increased sway amplitude and frequency, which was primarily observed for the mediolateral direction. Further, increasing balance task difficulty raised the arm restriction cost (ARC; a new measure to quantify free vs. restricted arm movement differences in postural control) that was more prominent in older adults. These findings indicate the ARC provides a measure of reliance on the upper body for balance control and that arm movement is important for postural control in older adults, especially during tasks of greater difficulty.  相似文献   

12.
The second-order motor planning ability of children with developmental coordination disorder (DCD) has often been studied using tasks that require judgements of end-state comfort (ESC). In these studies, children may have chosen to prioritize other aspects of performance (e.g., a comfortable start-posture) over ESC while still being able to complete the goal of the task. This is a limitation that is inherent to previously used ESC paradigms. To avoid this in the present study, 52 children with and without DCD (aged 5–12 years) completed a task that requires second-order motor planning for its successful completion. In the hexagonal knob task, children were instructed to grasp and rotate a hexagonal knob. The rotation angle varied in size: 60°, 120°, 180°, and 240° rotations. Both the 180° and 240° rotation conditions required an uncomfortable starting posture for successful task completion. Results showed that children with DCD were less likely to adjust their initial grip in anticipation of the required rotation angle, resulting in more task failures compared with typically developing (TD) children. Based on this finding we conclude that children with DCD experience genuine second-order motor planning difficulties. Analysis of temporal outcomes, showed that initial reaction time increased with rotation angle, but this was less pronounced for children with DCD than for TD children. There were no between group differences in timing of subsequent events. These results suggest that the difficulties of children with DCD are related to the initial planning process, that is, before the start of the movement.  相似文献   

13.
The effect of dominance on upper limb (UL) kinematics has only been studied on scapular movements. Moreover, when an anatomical UL movement is performed in a specific plane, secondary movements in the remaining planes involuntarily occur. These secondary movements have not been previously evaluated. The aim of this study was to compare the kinematics of primary and secondary angles of dominant and non-dominant UL during anatomical movements in asymptomatic adults.25 asymptomatic adults performed 6 anatomical movements bilaterally: shoulder flexion-extension, abduction-adduction, horizontal abduction-adduction, internal-external rotation, elbow flexion-extension and wrist pronation-supination. Kinematics of the dominant and non-dominant UL were compared by their ranges of motion (ROM) and their angular waveforms (Coefficient of Multiple Correlations, CMC).The comparison between dominant and non-dominant UL kinematics showed different strategies of movement, most notably during elbow flexion-extension (CMC = 0.29): the dominant UL exhibited more pronation at maximal elbow flexion. Significant secondary angles were found on most of the UL anatomical movements; e.g. a secondary ROM of shoulder (humero-thoracic) external-internal rotation (69° ± 16°) was found when the subject intended to perform maximal shoulder abduction-adduction (119° ± 21°).Bias of dominance should be considered when comparing pathological limb to the controlateral one. Normative values of primary and secondary angles during anatomical movements could be used as a reference for future studies on UL of subjects with neurological or orthopedic pathologies.  相似文献   

14.
Using a lifespan approach, the authors investigated developmental features of the control of ballistic aiming arm movements by manipulating movement complexity, response uncertainty, and the use of precues. Four different age groups of participants (6- and 9-year-old boys and girls and 24- and 73-year- old men and women, 20 participants in each age group) performed 7 types of rapid aiming arm movements on the surface of a digitizer. Their movement characteristics such as movement velocity, normalized jerk, relative timing, movement linearity, and intersegment intervals were profiled. Analyses of variance with repeated measures were conducted on age and task effects in varying movement complexity (Study 1), response uncertainty (Study 2), and precue use (Study 3) conditions. Young children and senior adults had slower, more variant, less smooth, and less linear arm movements than older children and young adults. Increasing the number of movement segments resulted in slower and more variant responses. Movement accuracy demands or response uncertainty interacted with age so that the 6- and 74-year-old participants had poorer performances but responded similarly to the varying treatments. Even though older children and young adults had better performances than young children and senior adults, their arm movement performance declined when response uncertainty increased. The analyses suggested that young children's and senior adults' performances are poorer because less of their movement is under central control, and they therefore use on-line adjustments. In addition, older children and young adults use a valid precue more effectively to prepare for subsequent movements than do young children and senior adults, suggesting that older children and young adults are more capable of organizing motor responses than arc young children and senior adults.  相似文献   

15.
16.
When humans grasp objects, the grasps foreshadow the intended object manipulation. It has been suggested that grasps are selected that lead to medial arm postures, which facilitate movement speed and precision, during critical phases of the object manipulation. In Experiment 1, it has been tested whether grasp selections lead to medial postures during rotations of a dial. Participants twisted their arms considerably before grasping the dial, even when the upcoming dial rotation was minimal (5°). Participants neither assumed a medial posture at any point during a short rotation, nor did they assume any of the postures involved in short rotations in the opposite direction. Thus, grasp selections did not necessarily lead to specific postures at any point of the object manipulation. Experiment 2 examined the effect of various grasps on the speed of dial rotations. A medial initial grasp resulted in the fastest dial rotations for most rotation angles. Spontaneously selected grasps were more excursed than necessary to maximize dial rotation speed. This apparent overshot might be explained by participants’ sensitive to the variability of their grasps and is in line with the assumption that grasps facilitate control over the grasped object.  相似文献   

17.
The comparison of fractions is a difficult task that can often be facilitated by separately comparing components (numerators and denominators) of the fractions—that is, by applying so-called component-based strategies. The usefulness of such strategies depends on the type of fraction pair to be compared. We investigated the temporal organization and the flexibility of strategy deployment in fraction comparison by evaluating sequences of eye movements in 20 young adults. We found that component-based strategies could account for the response times and the overall number of fixations observed for the different fraction pairs. The analysis of eye movement sequences showed that the initial eye movements in a trial were characterized by stereotypical scanning patterns indicative of an exploratory phase that served to establish the kind of fraction pair presented. Eye movements that followed this phase adapted to the particular type of fraction pair and indicated the deployment of specific comparison strategies. These results demonstrate that participants employ eye movements systematically to support strategy use in fraction comparison. Participants showed a remarkable flexibility to adapt to the most efficient strategy on a trial-by-trial basis. Our results confirm the value of eye movement measurements in the exploration of strategic adaptation in complex tasks.  相似文献   

18.
Grasping is a complex action which requires high-level motor control. Although the impact of aging on grasping has been investigated in some studies, to date little is known as to how the aging process interacts with the purpose of the movement. The aims of the present study were (i) to investigate the effect of aging on grasping movements, and to explore on how this effect is modulated by (ii) the goal of the task, and by (iii) the characteristics of the target such as its location in the visual field, its orientation and its size. Young and elderly adults were asked to grasp to move or to grasp to use objects of different sizes and orientations, presented either in the central or the peripheral visual field. Movement duration did not differ between the two groups. However, elderly participants required a longer approach phase and showed a different grasping strategy, characterized by larger grip aperture and smaller percentage of wrist rotation in comparison to young adults. Elderly adults showed a decrease in accuracy when grasping objects presented in the peripheral, but not in the central visual field. A similar modulation of the kinematic parameters consisting in longer planning and execution phases in the grasp to use in comparison to the grasp to move condition was observed in both groups, suggesting that the effect of aging might be minimized and compensated in more goal-directed tasks.  相似文献   

19.
Using a lifespan approach, the authors investigated developmental features of the control of ballistic aiming arm movements by manipulating movement complexity, response uncertainty, and the use of precues. Four different age groups of participants (6- and 9-year-old boys and girls and 24- and 73-year-old men and women, 20 participants in each age group) performed 7 types of rapid aiming arm movements on the surface of a digitizer. Their movement characteristics such as movement velocity, normalized jerk, relative timing, movement linearity, and intersegment intervals were profiled. Analyses of variance with repeated measures were conducted on age and task effects in varying movement complexity (Study 1), response uncertainty (Study 2), and precue use (Study 3) conditions. Young children and senior adults had slower, more variant, less smooth, and less linear arm movements than older children and young adults. Increasing the number of movement segments resulted in slower and more variant responses. Movement accuracy demands or response uncertainty interacted with age so that the 6- and 74-year-old participants had poorer performances but responded similarly to the varying treatments. Even though older children and young adults had better performances than young children and senior adults, their arm movement performance declined when response uncertainty increased. The analyses suggested that young children's and senior adults' performances are poorer because less of their movement is under central control, and they therefore use on-line adjustments. In addition, older children and young adults use a valid precue more effectively to prepare for subsequent movements than do young children and senior adults, suggesting that older children and young adults are more capable of organizing motor responses than are young children and senior adults.  相似文献   

20.
Warren (1970) has claimed that there are visual facilitation effects on auditory localization in adults but not in children. He suggests that a “visual map” organizes spatial information and that considerable experience of correlated auditory and visual events is necessary before normal spatial perception is developed. In the present experiment, children in Grades 1, 4, and 7 had to identify the position, right or left, of a single tone either blindfolded or with their eyes open. Analysis of the proportion of area under the ROC curve (obtained using reaction times) in the respective conditions showed that Ss were more sensitive to auditory position when vision was available. Reaction time was also generally faster in the light. I argue that the increase in sensitivity in the light represents updating of auditory position memory by voluntary eye movement. In the dark, eye movements are subject to involuntary and unperceived drift, which would introduce noise into the eye control mechanism and hence into auditory spatial memory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号