首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This study aimed to analyze the effect of different knee starting angles on jump performance, kinetic parameters, and intersegmental coupling coordination during a squat jump (SJ) and a countermovement jump (CMJ). Twenty male volleyball and basketball players volunteered to participate in this study. The CMJ was performed with knee flexion at the end of the countermovement phase smaller than 90° (CMJ<90), greater than 90° (CMJ>90), and in a preferred position (CMJPREF), while the SJ was performed from a knee angle of 70° (SJ70), 90° (SJ90), 110° (SJ110), and in a preferred position (SJPREF). The best jump performance was observed in jumps that started from a higher squat depth (CMJ<90–SJ70) and in the preferred positions (CMJ and SJ), while peak power was observed in the SJ110 and CMJ>90. Analysis of continuous relative phase showed that thigh–trunk coupling was more in-phase in the jumps (CMJ and SJ) performed with a higher squat depth, while the leg–thigh coupling was more in-phase in the CMJ>90 and SJPREF. Jumping from a position with knees more flexed seems to be the best strategy to achieve the best performance. Intersegmental coordination and jump performance (CMJ and SJ) were affected by different knee starting angles.  相似文献   

2.
Leg joint coordination systematically changes over the first months of life, yet there is minimal data on the underlying change in muscle torques that might account for this change in coordination. The purpose of this study is to investigate the contribution of torque changes to early changes in leg joint coordination. Kicking actions were analyzed of 10 full-term infants between 6 and 15-weeks of age using three-dimensional kinematics and kinetics. We found 11 of 15 joint angle pairs demonstrated a change from more in-phase intralimb coordination at 6-weeks to less in-phase coordination at 15-weeks. Although the magnitude of joint torques normalized to the mass of the leg remained relatively consistent, we noted more complex patterns of torque component contribution across ages. By focusing on the change in torques associated with hip–knee joint coordination, we found that less in-phase hip–knee joint coordination at 15-weeks was associated with decreased influence of knee muscle torque and increased influence of knee gravitational and motion-dependent torques, supporting that infants coordinate hip muscle torque with passive knee gravitational and motion-dependent torques to generate kicks with reduced active knee muscle torque. We propose that between 6 and 15-weeks of age less in-phase hip–knee coordination emerges as infants exploit passive dynamics in the coordination of hip and knee motions.  相似文献   

3.
Forward bending and backward return of the human trunk in the sagittal plane are associated with a specific lumbopelvic rhythm, which consists of magnitude and timing aspects. In this study, the age-related differences in the timing aspect of lumbopelvic rhythm were investigated using the continuous relative phase method. Specifically, the mean absolute relative phase (MARP) between the thoracic and pelvic motions as well as variation in MARP under repetitive motions, denoted by deviation phase (DP), were characterized in sixty participants between 20 and 70 years old. MARP and DP were determined for trunk forward bending and backward return tasks with self-selected slow and fast paces. The MARP and DP were both smaller (p = 0.003, p < 0.001 respectively) in the older versus younger age participants with no gender-related difference. In fast versus slow pace task, the MARP was smaller (p < 0.001) only in forward bending, whereas the DP was smaller (p < 0.001) in both the forward bending and backward return. A more in-phase and more stable lumbopelvic rhythm denoted respectively by smaller MARP and DP in older versus younger individuals maybe a neuromuscular strategy to protect the lower back tissues from excessive strain, in order to reduce the risk of injury.  相似文献   

4.
Inter-segmental coordination can be influenced by chronic low back pain (CLBP). The sagittal plane lower extremities inter-segmental coordination pattern and variability, in conjunction with the pelvis and trunk, were assessed in subjects with and without non-specific CLBP during free-speed walking. Kinematic data were collected from 10 non-specific CLBP and 10 non-CLBP control volunteers while the subjects were walking at their preferred speed. Sagittal plane time-normalized segmental angles and velocities were used to calculate continuous relative phase for each data point. Mean absolute relative phase (MARP) and deviation phase (DP) were derived to quantify the trunk-pelvis and bilateral pelvis-thigh, thigh-shank and shank-foot coordination pattern and variability over the stance and swing phases of gait. Mann-Whitney U test was employed to compare the means of DP and MARP values between two groups (same side comparison). Statistical analysis revealed more in-phase/less variable trunk-pelvis coordination in the CLBP group (P < 0.05). CLBP group demonstrated less variable right or left pelvis-thigh coordination pattern (P < 0.05). Moreover, the left thigh-shank and left shank-foot MARP values in the CLBP group, were more in-phase than left MARP values in the non-CLBP control group during the swing phase (P < 0.05). In conclusion, the sagittal plane lower extremities, pelvis and trunk coordination pattern and variability could be generally affected by CLBP during walking. These changes can be possible compensatory strategies of the motor control system which can be considered in the CLBP subjects.  相似文献   

5.
Infants first consistently reach for objects between 3 and 5 months of age. In the months before reaching, infants produce a variety of arm movements. The relationship between these early arm movements and the emergence of purposeful reaching is still unclear. The purpose of the present study was to determine how groups of non-reaching, nearly reaching, and newly reaching infants changed the kinematics of their spontaneous arm movements in the presence of a toy. Five infants in each of these groups were observed with a high-speed motion capture system during trials with and without a toy present. Kinematic analyses examined 3D hand, shoulder, and elbow motions. Our results suggest that with a toy present, non-reachers altered their movement quantity whereas near- and new-reachers altered their movement quality through spatio-temporal dissociation and reorientation of the arm. When comparing the changes across groups we observed three preliminary patterns of toy-oriented changes. Our results join other studies to strengthen the relationship between early arm movements and purposeful reaching. Future longitudinal studies are now required to begin to fully understand the complex process by which infants adapt their early arm movements for purposeful behaviors.  相似文献   

6.
This study aimed to investigate the kicking limb coordinative patterns adopted by karate practitioners (karateka) when impacting (IRK), or not impacting (NIRK) a target during a roundhouse kick. Six karateka performed three repetitions of both kicks while kicking limb kinematics were recorded using a stereophotogrammetric system. Intra-limb coordination was quantified for hip and knee flexion–extension from toe-off to kick completion, using the Continuous relative phase (CRP). Across the same time interval, thigh and shank angular momentum about the vertical axis of the body was calculated. For all trials, across all participants, CRP curve peaks and maximum and minimum angular momentum were determined. A RM-ANOVA was performed to test for differences between kicking conditions.The CRP analysis highlighted, during the central portion of both kicks, a delayed flexion of the hip with respect to the knee. Conversely, during the terminal portion of the CRP curves, the NIRK is performed with a more in-phase action, caused by a higher hip angular displacement. The NIRK is characterized by a lower angular momentum which may enhance control of the striking limb. It would seem that the issue of no impact appears to be solved through the control of all segments of the kicking limb, in contrast to the primary control of the lower leg only observed during the IRK.  相似文献   

7.
BackgroundImpaired motor development can significantly affect a child’s life and may result in an increased risk of a range of physical and psychological disorders. Active video game (AVG) interventions have been demonstrated to enhance motor skills in children with Developmental Coordination Disorder (DCD); however a home-based intervention has not been assessed.ObjectivesThe primary aim of this study was to compare the changes in motor coordination between a 16 week period of AVG use, with 16 weeks of normal activities (NAG). The secondary aim was to compare the child and parent perceptions of their physical performance between the AVG and NAG conditions.MethodsTwenty-one 9–12 year olds (10 males) were confirmed to be at risk of DCD (⩽16th percentile Movement Assessment Battery for Children-2nd edition (MABC-2) and ⩽15th percentile Developmental Coordination Disorder Questionnaire (DCDQ)) and participated in this crossover randomised and controlled trial. Data was collected at study entry, after the first 16 week condition and following the final 16 week condition, including; (1) the MABC-2, (2) three-dimensional motion analysis of single leg balance and finger–nose tasks, and (3) parent perception of physical skills. Participant perception of physical skills was collected only after the first and second conditions.ResultsThere was no significant difference between AVG and NAG for any of the primary variables including the MABC-2, balance centre-of-mass path distance and finger–nose path distance. There was no significant intervention effect for secondary measures of motor coordination; however the children perceived their motor skills to be significantly enhanced as a result of the AVG intervention in comparison to the period of no intervention.ConclusionA 16 week home based AVG intervention did not enhance motor skills in children with DCD, although they perceived their physical skills to be significantly improved.Trial Registration: Australia and New Zealand Clinical trials Registry (ACTRN 12611000400965).  相似文献   

8.
In a recent study, children with movement clumsiness (or Developmental Coordination Disorder-DCD) were shown to have difficulties making rapid online corrections when reaching, demonstrated by slower and less accurate movements to double-step targets (Hyde & Wilson, 2011). These results suggest that children with DCD have difficulty using predictive estimates of limb position when making rapid adjustments to movement, in-flight. However, chronometric data alone does not provide strong evidence for this hypothesis: it remains unclear whether early (and rapid) control parameters or post-correction stages of the movement trajectory are affected. Thus, the overarching aim of this study was to conduct a kinematic analysis of double-step reaching in order to isolate the different control parameters that might explain the slower and less accurate double-step reaching performance of children with DCD. Participants were a new sample of 13 children with DCD aged between 8-12 years and 13 age-matched controls. Children were required to reach and touch one of three possible targets presented at the coordinates -20°, 0° and 20° on a 17 in. LCD touch-screen. For most trials (80%) the target remained stationary for the duration of movement (non-jump trials), while for the remainder (20%), the target jumped randomly to one of two peripheral locations at movement onset (jump trials). Consistent with earlier work, children with DCD were slower to initiate reaching compared to controls and showed longer MT and more errors on jump trials. Kinematic data showed that while the two groups did not differ on time to peak velocity or acceleration, children with DCD were slower to correct reach trajectory on jump trials. No group differences were observed on late kinematic markers, e.g., post-correction time. The pattern of results support and extend earlier work showing deficits in ROC in DCD. From a computational perspective, delayed corrections to the reach trajectory suggests some difficulty integrating information about the target perturbation with a predictive (or forward) estimate of limb position relative to the initial target. These conclusions are discussed, along with directions for future research.  相似文献   

9.
This study examined the effect of swimming speed on inter-arm coordination and the inter-relationships between swimming speed, inter-arm coordination, and other stroke parameters, in a group of competitive unilateral arm amputee front crawl swimmers. Thirteen highly-trained swimmers were filmed underwater during a series of 25-m front crawl trials of increasing speed. Arm coordination for both arms was quantified using an adapted version of the Index of Coordination. Inter-arm coordination of the amputee swimmers did not change as swimming speed was increased up to maximum. Swimmers showed significantly more catch-up coordination of their affected-arm compared to their unaffected-arm. When sprinting, the fastest swimmers used higher stroke frequencies and less catch-up of their affected-arm than the slower swimmers. Unilateral arm-amputees used an asymmetrical strategy for coordinating their affected-arm relative to their unaffected-arm to maintain the stable repetition of their overall arm stroke cycle. When sprinting, the attainment of a high stroke frequency is influenced mainly by the length of time the affected-arm is held in a stationary position in front of the body before pulling. Reducing this time delay appears to be beneficial for successful swimming performance.  相似文献   

10.
Movement speed during trunk flexion has long been reported to affect task performance and biomechanical responses. The current study investigated how movement speed changed lumbopelvic coordination, especially lumbopelvic continuous relative phase and phase variability during trunk flexion. Eighteen subjects executed a paced trunk flexion routine over time periods of 3, 7, 11 and 15 seconds. The results demonstrated that compared with the 3-s condition, lumbopelvic continuous relative phase was 98.8% greater in the 15-s condition, indicating a more anti-phase coordination pattern. This pattern is suggested to mitigate the increased spinal loading associated with the longer duration of muscle exertion. Additionally, phase variability was 18.8% greater in the 15-s trials than the 3-s trials, such an unstable coordination pattern is likely caused by the more active neuromuscular control. Findings of this study provide important information about the effects of movement speed on lumbopelvic coordination during trunk flexion.  相似文献   

11.
Previous postural studies of traumatic brain injury (TBI) patients have been limited to identifying deficits in static and quasi-dynamic postural control tasks such as weight shifting. In this study, we examined whether or not patients with TBI are able to scale adequately their postural adjustments during the performance of the dynamic task of bimanual load-lifting. An age matched group of healthy adults served as controls. We used the Tetrax posturography system that calculates a stability score (ST) based on fluctuations in vertical ground reaction forces, normalized for body weight. During quiet standing, the ST scores of the TBI group were significantly higher than the control group. Forward weight shift and percentage change in the vertical ground reaction forces (lift postural adjustment (LPA) and post-lift postural adjustment (PLPA) scores) linearly increased with increasing load weight in both healthy and TBI subjects. Group differences were found in the magnitude of forward weight shift but not in the relative increase of the LPA and PLPA scores during the lifting and post-lifting phases respectively. The forward weight shift of the TBI group was lower-than-normal and asymmetrical--there was significantly less forward weight shift on the more affected than on the less affected limb. In addition, a significant amplitude coupling was found between the scaling of the weight shift of the heel and forefoot of each limb. However, no coupling was found between the weight shift amplitudes of homologous parts of both limbs in the TBI group. The results showed that scaling based on prior experience was preserved in the TBI group, though some TBI subjects demonstrated absent scaling in either the more affected or less affected heel or forefoot. The differences between the normal and TBI groups in postural adjustments are not necessarily a sign of pathology; rather they may represent a deliberate choice of the central nervous system to counteract predictable disturbances.  相似文献   

12.
Two experiments examined on-line processing during the execution of reciprocal aiming movements. In Experiment 1, participants used a stylus to make movements between two targets of equal size. Three vision conditions were used: full vision, vision during flight and vision only on contact with the target. Participants had significantly longer movement times and spent more time in contact with the targets when vision was available only on contact with the target. Additionally, the proportion of time to peak velocity revealed that movement trajectories became more symmetric when vision was not available during flight. The data indicate that participants used vision not only to 'home-in' on the current target, but also to prepare subsequent movements. In Experiment 2, liquid crystal goggles provided a single visual sample every 40 ms of a 500 ms duty cycle. Of interest was how participants timed their reciprocal aiming to take advantage of these brief visual samples. Although across participants no particular portion of the movement trajectory was favored, individual performers did time their movements consistently with the onset and offset of vision. Once again, performance and kinematic data indicated that movement segments were not independent of each other.  相似文献   

13.
The purpose of the present study was to examine the effect of a group-based task oriented skills training program on motor and physical ability for children with DCD. It was also investigated if there was an effect on fine motor and handwriting tasks that were not specifically practiced during the training program. Forty-one children aged 6–10 years took part in this study. Children were assigned to three groups: an experimental training group consisting of 14 children with DCD, a control non-training group consisted of 13 children with DCD and a control non-training group consisting of 14 typically developed children. The measurements included were, the Movement Assessment Battery for Children (MABC), the Modified Agility Test (MAT), the Triple Hop Distance (THD), the 5 Jump-test (5JT) and the Handwriting Performance Test. All measures were administered pre and post an 8-week training program. The results showed that 10 children of the DCD training-group improved their performance in MABC test, attaining a score above the 15th percentile after their participation in the training program. DCD training-group showed a significant improvement on all cluster scores (manual dexterity (t (13) = 5.3, p < .001), ball skills (t (13) = 2.73, p < .05) and balance (t (13) = 5.13, p < .001). Significant performance improvements were also found in MAT, THD, 5JT (t (13) = –4.55; p < .01), handwriting quality (t (12) = –2.73; p < .05) and speed (t (12) = –4.2; p < .01) after the training program. In conclusion, improvement in both practiced and non-practiced skills, in the training program, may reflect improvement in motor skill but also transfer to other skills.  相似文献   

14.
Abstract

The aim of this study was to examine effects of a task intervention on kinematic synergies in catching. Participants were young children (5.58?±?0.52?years) with the lowest scores on two-hand catching, according to assessments with the Test of Gross Motor Development-2 (TGMD-2) and were allocated into two groups. The constraints group took part in an 8-week intervention, whereas the control group experienced a typical physical education. Both groups were assessed with motor development and kinematic coordination measures with a catching task with a ball thrown from 2?m distance. Kinematic variables were recorded using a wireless motion capture system. A principal component analysis (PCA) was used to measure the kinematic synergies formed among active body parts. Two synergies that emerged in catching were mainly utilised for “reaching” and “catching” the ball. The control group tended to re-organise the majority of active body parts into two functional units in all phases, whereas the constraints group adapted their active parts into functional units according to the requirement of the novel movement in the transfer task. The findings of this study suggested that task constraints could facilitate object control by re-organisation of active body parts into functional synergies to achieve successful performance.  相似文献   

15.
It was proposed that grasping is a relatively stereotyped movement pattern which can be subdivided into the components of manipulation, transport, and orientation of the hand. However, it is still a matter of debate whether these components are independent of each other. In three experiments we altered the start posture of the hand by either changing the size of the start aperture or the orientation of the hand prior to movement onset. The variation of the aperture size primarily affected the manipulation component of the grip resulting in an overall change of the pre-shaping profile. In contrast, an alteration of the start orientation affected the manipulation and the transport components to a similar extent. These results give further evidence that hand orientation is neither planned nor controlled independently from the other movement components. Moreover, when the grip had to match specific object properties, adjustments were mainly achieved within the first movement part. In contrast, when there were no movement constraints the final finger positions were influenced by the initial start posture of the hand. We found no evidence for a fixed spatial or temporal coupling of the grasp and the transport component in our experiments.  相似文献   

16.
Adaptations in lower limb movement patterns were examined when performance was maintained during a fatiguing repetitive loading task. Forty recreationally active male and female participants performed single-leg hopping to volitional exhaustion at 2.2 Hz to a submaximal height. Spatio-temporal characteristics, mechanical characteristics and variability of the knee-ankle and hip-knee joint couplings were determined at 20% increments during the duration of the hopping task. Variability of the knee-ankle and hip-knee couplings in the flexion/extension axis significantly increased during the loading and propulsion phases during the hopping task (p < 0.05). Performance (vertical stiffness, hopping frequency and height) did not change significantly during the task (p > 0.05), however foot contact time increased progressively during this task (p < 0.05) and maximum hop height significantly decreased after the task (p < 0.05). The observed increase in variability between adjoining lower limb segments demonstrated the ability of the neuromotor system to adapt and maintain performance even with the onset of fatigue. This finding highlights that during the performance of a rapid and repetitive loading activity, performance can be preserved when there is variability in the neuromotor system.  相似文献   

17.
The purpose of this study was to explore the level of inter- and intra-individual variability in the kinematic profiles of the back squat movement among skilled weightlifters. Ten competitive weightlifters volunteered for participation in this study. Barbell velocity (VBarbell) and angular velocity of the ankle (ωAnkle), knee (ωKnee) and hip joint (ωHip) were obtained by kinematic recording of six trials at 90% of 1RM in the back squat. Inter-individual variability was assessed by analysing inter-individual differences in the velocity curves through the statistical parametric mapping method. Intra-individual variability was assessed through a correlation analysis between the barbell velocity curves of each trial for each participant. Partial least squares regression analysis, was performed to relate changes in intra-individual variability to movement and anthropometric characteristics. Significant inter- and intra-individual differences were identified in VBarbell, ωAnkle, ωKnee, and ωHip (p ≤ 0.05). Having a short trunk and thigh, and a long shin in combination with greater anterior-posterior displacement of the barbell and slower velocities during the acceleration phase increased intra-individual movement consistency over movement variability. The results of the present study clearly demonstrate that skilled weightlifters display both significant inter- and intra-individual variability in the successful execution of the back squat.  相似文献   

18.
The purpose of the experiment was to investigate whether skill level differentially organizes the coordination of the postural system and upper limb kinematics in a pistol-aiming task. Participants aimed an air-pistol at a target center in 30 s trials as accurately as possible while standing on a force platform with shooting arm joint kinematics recorded. The novice group had greater motion of the pistol end point, arm joints and the center of pressure than the skilled group. Principal components analysis (PCA) showed that the skilled group required 2 components as opposed to the 3 components of the novice group to accommodate the variance. Coherence analysis in the 0–1 Hz bandwidth revealed that the coupling between posture and upper-limb movement was stronger in the skilled than the novice group. The findings are consistent with the view that skill acquisition reduces the kinematic variables into a lower dimensional functional unit that in pistol-aiming is defined over the collective posture and upper-limb system.  相似文献   

19.
Integrity of both cerebral hemispheres is required to control in-phase or anti-phase coupling of ipsilateral hand and foot oscillations, as shown by the impairment of these tasks when performed on the healthy side of hemiplegic patients. On this basis, coupling of hand–foot movements was analysed in a right-handed subject (ME) who underwent a total resection of the corpus callosum. Oscillations of the prone hand and foot, paced by a metronome at different frequencies, as well as EMG activity in extensor carpi radialis (ECR) and tibialis anterior (TA) muscles were analysed by measuring the average phase difference between the hand and foot movements and EMG cycles.

ME performed in-phase movements (right-hand extension coupled to right-foot dorsal flexion) at frequencies up to 3 Hz, though the hand cycle progressively lagged the foot cycle as the frequency increased. At 3 Hz the hand lag reached −142° (as compared to about 25° in healthy subjects). The lag increased even further after application of an inertial load to the hand, reaching 180° at 1.8 Hz (about 50° in healthy subjects). ME's hand lag is caused by the lack of any anticipatory reaction in hand movers. In contrast to healthy subjects, which activate the ECR earlier than the TA when the frequency increases, ME activated the ECR later than TA at all frequencies higher than 0.9 Hz.

Anti-phase movements (hand extension coupled to foot plantar flexion) were performed only upto 1 Hz in unloaded conditions. At 0.6 Hz, movements were in tight phase-opposition (3°), but at 1 Hz, the hand lag reached −34° because of a delayed ECR activation. After hand loading ME was unable to couple movements in anti-phase. In contrast, normal subjects maintain a tight anti-phase coupling up to 2.0 Hz, both with an unloaded or loaded hand. Similar deficits were observed by ME when performing in-phase and anti-phase coupling on the left side, as well as when he was blindfolded.

In normal subjects, an anticipated muscular activation of hand movers compensates for hand loading. Since this compensation must depend on monitoring the hand delay induced by loading, the absence in ME of such compensatory reaction suggests that callosal division had apparently compromised the mechanisms sustaining feedback compensation for differences in the biomechanical limb properties. They also confirm and reinforce the idea that elaboration of the afferent message, aiming at controlling the phase of the movement association, needs the co-operation of both cerebral hemispheres.  相似文献   


20.
Recent significant research in a number of disciplines centers on the concept of the sense of agency. Because many of these studies cut across disciplinary lines there is good reason to seek a clear consensus on what ‘sense of agency’ means. In this paper I indicate some complexities that this consensus might have to deal with. I also highlight an important phenomenological distinction that needs to be considered in any discussion of the sense of agency, regardless of how it gets defined. Finally, I suggest that the sense of agency has an ambiguous phenomenology and I offer some critical comments on current models that fail to notice this ambiguity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号