首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three experiments examined the effects of stimulus duration, retinal eccentricity, and visual noise on the processing of human faces presented to the left visual field/right hemisphere (LVF-RH) and right visual field/left hemisphere (RVF-LH). In Experiment 1 observers identified which of 10 similar male faces was presented on a screen. The single face was presented for 10, 55, or 100 ms at 1 degree, 4 degrees, or 9 degrees of visual angle to the left or right of fixation. Decreasing stimulus duration and increasing retinal eccentricity lowered face recognition. The effect of duration was the same for LVF-RH and RVF-LH trials, but the detrimental effect of increasing retinal eccentricity was larger on LVF-RH trials than on RVF-LH trials. In Experiment 2 observers indicated whether a single face from this same set was a member of a memorized set of five positive faces. The probe face on each trial was presented alone or embedded in visual noise. Visual noise increased the error rate more on LVF-RH trials than on RVF-LH trials. This effect was replicated in Experiment 3, which also required observers to make a much easier discrimination between male and female faces. In the male/female task visual noise tended to impair performance more on RVF-LH trials than on LVF-RH trials, opposite the effect for the male/male task. These results are discussed in terms of hemispheric asymmetry for global versus local features of faces, the level of feature analysis demanded by a task, and the level of feature analysis most disrupted by perceptual degradation.  相似文献   

2.
Two experiments tested the limiting case of a multiple resources approach to resource allocation in information processing. In this framework, the left and right hemispheres are assumed to have separate, limited-capacity pools of undifferentiated resources that are not mutually accessible, so that tasks can overlap in their demand for these resources either completely, partially, or not at all. We tested all three degrees of overlap in demand for left hemisphere supplies, using dual-task methodology in which subjects were induced to pay different amounts of attention to each task. Experiment 1 compared complete and partial overlap by combining a verbal memory load with a task in which subjects named nonsense syllables briefly presented to either the left or right visual field (LVF and RVF, respectively). Experiment 2 compared complete versus no overlap by using the same verbal memory load combined with a laterally presented same-different judgment task that did not require a spoken response. Decrements from single-task performance were always more severe when the visual field task stimulus was presented to the RVF. Further, subjects in Experiment 1 were able to trade performance between tasks on both LVF and RVF trials because there was always at least some overlap in left hemisphere demand. In Experiment 2, performance trade-offs were observed on RVF (complete overlap) trials, but not on LVF trials, where no overlap in demand existed. These results contradict a single-capacity model, but they support the idea that the hemispheres' resource supplies are independent and have implications for both cerebral specialization and divided attention issues.  相似文献   

3.
We examined the capacity of the cerebral hemispheres to process faces that deviate from canonical perspective. In Experiment 1, normal Ss performed a gender categorization of faces presented at varying angular orientations in the left visual field (LVF) or right visual field (RVF). Orientation affected processing speed, more so in the RVF than in the LVF. The function relating reaction times to disorientation of the faces was approximately monotonic and reflected the increased difficulty in extracting relevant configurational information as the faces were rotated from canonical perspective. In Experiment 2, 3 commissurotomized Ss performed the same task. They responded above chance in the 2 visual fields, and the pattern of their results was similar to that obtained with the normal Ss, but the effect of disorientation was considerably more pronounced. It is suggested that the right hemisphere contribution becomes more critical the further the visual pattern departs from conventional view. Issues regarding the specification of processes correcting for disorientation and comparison of normal and commissurotomized Ss are discussed.  相似文献   

4.
The processing advantage for words in the right visual field (RVF) has often been assigned to parallel orthographic analysis by the left hemisphere and sequential by the right. The authors investigated this notion using the Reicher-Wheeler task to suppress influences of guesswork and an eye-tracker to ensure central fixation. RVF advantages obtained for all serial positions and identical U-shaped serial-position curves obtained for both visual fields (Experiments 1-4). These findings were not influenced by lexical constraint (Experiment 2) and were obtained with masked and nonmasked displays (Experiment 3). Moreover, words and nonwords produced similar serial-position effects in each field, but only RVF stimuli produced a word-nonword effect (Experiment 4). These findings support the notion that left-hemisphere function underlies the RVF advantage but not the notion that each hemisphere uses a different mode of orthographic analysis.  相似文献   

5.
Repetition priming refers to facilitated recognition of stimuli that have been seen previously. Although a great deal of work has examined the properties of repetition priming for familiar faces, little has examined the neuroanatomical basis of the effect. Two experiments are presented in this paper that combine the repetition priming paradigm with a divided visual field methodology to examine lateralized recognition of familiar faces. In the first experiment participants were presented with prime faces unilaterally to each visual field and target faces foveally. A significant priming effect was found for prime faces presented to the right hemisphere, but not for prime faces presented to the left hemisphere. In Experiment 2, prime and target faces were presented unilaterally, either to the same visual field or to the opposite visual field (i.e., either within hemisphere or across hemispheres). A significant priming effect was found for the within right hemisphere condition, but not for the within left hemisphere condition, replicating the findings of the first experiment. Priming was also found in both of the across hemispheres conditions, suggesting that interhemispheric cooperation occurs to aid recognition. Taken in combination these experiments provide two main findings. First, an asymmetric repetition priming effect was found, possibly as a result of asymmetric levels of activation following recognition of a prime face, with greater priming occurring within the right hemisphere. Second, there is evidence for asymmetric interhemispheric cooperation with transfer of information from the right hemisphere to the left hemisphere to facilitate recognition.  相似文献   

6.
Repetition priming refers to facilitated recognition of stimuli that have been seen previously. Although a great deal of work has examined the properties of repetition priming for familiar faces, little has examined the neuroanatomical basis of the effect. Two experiments are presented in this paper that combine the repetition priming paradigm with a divided visual field methodology to examine lateralized recognition of familiar faces. In the first experiment participants were presented with prime faces unilaterally to each visual field and target faces foveally. A significant priming effect was found for prime faces presented to the right hemisphere, but not for prime faces presented to the left hemisphere. In Experiment 2, prime and target faces were presented unilaterally, either to the same visual field or to the opposite visual field (i.e., either within hemisphere or across hemispheres). A significant priming effect was found for the within right hemisphere condition, but not for the within left hemisphere condition, replicating the findings of the first experiment. Priming was also found in both of the across hemispheres conditions, suggesting that interhemispheric cooperation occurs to aid recognition. Taken in combination these experiments provide two main findings. First, an asymmetric repetition priming effect was found, possibly as a result of asymmetric levels of activation following recognition of a prime face, with greater priming occurring within the right hemisphere. Second, there is evidence for asymmetric interhemispheric cooperation with transfer of information from the right hemisphere to the left hemisphere to facilitate recognition.  相似文献   

7.
Three experiments dealing with hemispheric specialization are presented. In Experiment 1, words and/or faces were presented tachistoscopically to the left or right of fixation. Words were more accurately identified in the right visual field and faces were more accurately identified in the left visual field. A forced choice error analysis for words indicated that errors made for word stimuli were most frequently visually similar words and this effect was particularly pronounced in the left visual field. Two additional experiments supported this finding. On the basis of the results, it was argued that word identification is a multistage process, with visual feature analysis carried out by the right hemisphere and identification and naming by the left hemisphere. In addition, Kinsbourne's attentional model of brain function was rejected in favor of an anatomical model which suggests that simultaneous processing of verbal and nonverbal information does not constrict the attention of either hemisphere.  相似文献   

8.
To investigate hemisphere function of experts, Go experts and novices were given two Salthouse-type visuospatial tasks. In Experiment 1, stimuli of 4 digits in 6 cells were projected to the left (LVF) or right visual field (RVF). There was no prominent group difference in identification of digits and locations. In Experiment 2, stimuli of 4 digits in 16 cells were projected to the LVF or RVF. Go experts showed more accurate performance than novices. Both groups showed the same laterality, an RVF advantage, in the number identification. However, in the location identification, Go experts showed no visual field difference, whereas novices showed an RVF advantage. Based on these findings, the relationship between task demand and hemisphere function of experts is discussed.  相似文献   

9.
Strategies of semantic categorization in intact cerebral hemispheres were studied in two experiments by presenting names of typical and atypical category instances to the left visual field (LVF) (right hemisphere) or to the right visual field (RVF) (left hemisphere). The results revealed that the typicality of instances had a large effect on categorization times in the LVF in both experiments, suggesting that the right hemisphere relies strongly on a holistic, similarity-based comparison strategy. In Experiment 1, the typicality effect was weaker in the RVF than in the LVF. In Experiment 2, a typicality effect in the RVF was observed for the "four-footed animal" category but not for the "bird" category. The hypothesis that the left hemisphere employs a strategy based on defining or necessary features is not supported by the observed typicality effect in the "four-footed animal" category. Instead, it is suggested that the left hemisphere may be able to categorize on the basis of prestored instance-category knowledge. When such knowledge is not available (e.g., as for four-footed animals), a similarity-based comparison strategy is employed by the left hemisphere.  相似文献   

10.
A large orthographic neighborhood (N) facilitates lexical decision for central and left visual field/right hemisphere (LVF/RH) presentation, but not for right visual field/left hemisphere (RVF/LH) presentation. Based on the SERIOL model of letter-position encoding, this asymmetric N effect is explained by differential activation patterns at the orthographic level. This analysis implies that it should be possible to negate the LVF/RH N effect and create an RVF/LH N effect by manipulating contrast levels in specific ways. In Experiment 1, these predictions were confirmed. In Experiment 2, we eliminated the N effect for both LVF/RH and central presentation. These results indicate that the letter level is the primary locus of the N effect under lexical decision, and that the hemispheric specificity of the N effect does not reflect differential processing at the lexical level.  相似文献   

11.
Summary Hemispheric differences for feature perturbations were investigated in two experiments. Stimulus displays consisting of five small squares arranged in a single row were presented tachistoscopically, with the subject instructed to state in which square a horizontal tick mark was located. Ticks could occur in any of the three middle squares, with half of the ticks presented on the inside and half presented on the outside of the square in relation to the fovea. Experiment 1 presented each array of five squares to the right or left of fixation at one of three distances from the fovea. Experiment 2 manipulated the distance between the squares and kept foveal distance constant. In each experiment, fewer errors were made when stimuli were presented to the left visual field/right hemisphere than when they were presented to the right visual field/left hemisphere, when ticks migrated toward the fovea. Experiment 1 found that increasing the distance from the fovea increased the error rate, but did not change the hemispheric differences. Experiment 2 found that increasing the distance between the squares did not change hemispheric effects reliably. The data imply that hemispheric differences for perceptual processing begin very early during sensory analysis.  相似文献   

12.
Observers identified consonant–vowel–consonant trigrams with the letters arranged vertically by pronouncing the stimulus (treating the bottom letter as the first letter) and spelling it from bottom to top. On each trial, the trigram was presented to the left visual field/right hemisphere (LVF/RH), to the right visual field/left hemisphere (RVF/LH), or to both visual fields simultaneously (BILATERAL trials). Quantitative and qualitative visual field differences were identical to those found when observers used a more natural response output order, treating the top letter of the trigram as the first letter. The results suggest that, regardless of output order, attention is distributed across the three letters in a relatively slow, top-to-bottom fashion on LVF/RH and BILATERAL trials, whereas attention is distributed more rapidly and evenly across the three letters on RVF/LH trials.  相似文献   

13.
The cerebral hemispheres have been proposed to engage different word recognition strategies: the left hemisphere implementing a parallel, and the right hemisphere, a sequential, analysis. To investigate this notion, we asked participants to name words with an early or late orthographic uniqueness point (OUP), presented horizontally to their left (LVF), right (RVF), or both fields of vision (BVF). Consistent with past foveal research, Experiment 1 produced a robust facilitatory effect of early OUP for RVF/BVF presentations, indicating the presence of sequential processes in lexical retrieval. The effect was absent for LVF trials, which we argue results from the disadvantaged position of initial letters of words presented in the LVF. To test this proposition, Experiment 2 assessed the discriminability of various letter positions in the visual fields using a bar-probe task. The obtained error functions highlighted the poor discriminability of initial letters in the LVF and latter letters in the RVF. To confirm that this asymmetry in initial letter acuity was responsible for the absent OUP effect for LVF presentations, Experiment 3 replicated Experiment 1 using vertical stimulus presentations. Results indicated a marked facilitatory effect of early OUP across visual fields, supporting our contention that the lack of OUP effect for LVF presentations in Experiment 1 resulted from poor discriminability of the initial letters. These findings confirm the presence of sequential processes in both left and right hemisphere word recognition, casting doubt on parallel models of word processing.  相似文献   

14.
Modes of word recognition in the left and right cerebral hemispheres   总被引:6,自引:5,他引:1  
Four experiments are reported examining the effects of word length on recognition performance in the left and right visual hemifields (LVF, RVF). In Experiments 1 and 2 length affected lexical decision latencies to words presented in the LVF but not to words presented in the RVF. This result was found for both concrete and abstract nouns. Changing from a normal horizontal format to the use of unconventionally "stepped" words, however, produced length effects for words in both visual hemifields (Experiment 3). The Length x VHF interaction was found once again in Experiment 4 where subjects classified words as either concrete or abstract. A model proposing two modes of visual processing of letter strings is presented to account for these findings. Mode A operates independent of string length and is seen only in left hemisphere analysis of familiar words. Mode B is length dependent: it is the only mode possessed by the right hemisphere but is displayed by the left hemisphere to nonwords and to words in abnormal formats.  相似文献   

15.
Three experiments were concluded to investigate the involvement of the two cerebral hemispheres in processing faces. Perceptual discrimination of pairs of faces was equally speedy overall when the stimuli were presented in the right visual field (RVF) or left visual field (LVF). For faces differing in one or two features, however, a qualitatively different pattern of results was obtained for the two visual fields, and an RVF advantage emerged when the difference lay in the upper part of the faces (Experiment 1). An examination of the discriminability of the facial features from which the faces were constructed (Experiment 2) showed that the processes involved in RVF comparisons of faces were not dependent on the saliency of the features but, rather, followed a top-to-bottom serial analysis of the stimuli; the speed of the processing involved in LVF presentations was a function of the degree of similarity of the different comparison faces. Evidence for a serial type of comparison faces were used (Experiment 3). It was concluded that even though comparisons were equally speedy overall in LVF and RVF presentations, qualitatively different processes take place in the two hemispheres, which prove competent at processing faces, each in its own way. Some methodological problems inherent in tachistoscopic studies are discussed, and it is proposed that the quality of the stimulus representation achieved or required for cognitive processing may be determinant in the emergence of functional hemispheric asymmetries.  相似文献   

16.
Event-related potentials (ERPs) were recorded as healthy participants listened to puns such as "During branding, cowboys have sore calves." To assess hemispheric differences in pun comprehension, visually presented probes that were either highly related (COW), moderately related (LEG), or unrelated, were presented in either the left or right visual half field (LVF/RVF). The sensitivity of each hemisphere to the different meanings evoked by the pun was assessed by ERP relatedness effects with presentation to the LVF and the RVF. In Experiment 1, the inter-stimulus interval between the pun and the onset of the visual probe was 0 ms; in Experiment 2, this value was 500 ms. In Experiment 1, both highly and moderately related probes elicited similar priming effects with RVF presentation. Relative to their unrelated counterparts, related probes elicited less negative ERPs in the N400 interval (300-600 ms post-onset), and more positive ERPs 600-900 ms post-onset, suggesting both meanings of the pun were equally active in the left hemisphere. LVF presentation yielded similar priming effects (less negative N400 and a larger positivity thereafter) for the highly related probes, but no effects for moderately related probes. In Experiment 2, similar N400 priming effects were observed for highly and moderately related probes presented to both visual fields. Compared to unrelated probes 600-900 ms post-onset, related probes elicited a centro-parietal positivity with RVF presentation, but a fronto-polar positivity with LVF presentation. Results suggest that initially, the different meanings evoked by a pun are both active in the left hemisphere, but only the most highly related meaning is active in the right hemisphere. By 500 ms, both meanings are active in both hemispheres.  相似文献   

17.
The nonconscious orientation of attention to famous faces was investigated using masked 17 ms stimulus exposure. Each trial presented a simultaneous pair of one famous and one unfamiliar face, matched on physical characteristics, one each in left visual field (LVF) and right visual field (RVF). These were followed by a dot probe in either LVF or RVF to which participants made a speeded two-alternative forced-choice discrimination response. Participants subsequently evaluated the affective valence (good/evil) of the famous persons on a 7-point scale. Higher accuracy of dot probe discrimination in the same visual field (VF) as the famous face suggested that attention was oriented towards faces of persons evaluated “good”, but a reverse orientation effect was observed for those evaluated “evil”. The awareness check presented the same face pairs under the same conditions, and participants were at chance in a task of selecting the famous face in each pair. The results suggest that famous faces can be identified without awareness, and that attention is attracted by the faces of famous persons not regarded as “evil”.  相似文献   

18.
The authors explored whether manipulating the location of distraction in the participants' visual field influences the degree of competition between visual and other cognitive processes. If a cognitive task is lateralized to a particular hemisphere, visual distraction directed toward that same hemisphere should impair performance on that task more than should visual distraction directed toward the other hemisphere. Consistent with this hypothesis, the authors found in Experiments 1 and 2 that participants better recalled words of high imageability in a verbal memory task when the examiner was in the participant's left visual field (right hemisphere) than when the examiner was in the participant's right visual field (left hemisphere). In Experiment 3, the authors found that this effect reversed for performance on a right-hemisphere spatial task.  相似文献   

19.
Hemispheric specialization for processing different types of rapidly exposed stimuli was examined in a forced choice reaction time task. Four conditions of recognition were included: tacial emotion, neutral faces, emotional words, and neutral words. Only the facial emotion condition produced a significant visual field advantage (in favor of the left visual field), but this condition did not differ significantly from the neutral face condition's left visual field superiority. The verbal conditions produced significantly decreased latencies with RVF presentation, while the LVF presentation was associated with decreased latencies on the facial conditions. These results suggested that facial recognition and affective processing cannot be separated as independent factors generating right hemisphere superiority for facial emotion perception, and that task parameters (verbal vs. nonverbal) are important influences upon effects in studies of cerebral specialization.  相似文献   

20.
Recent evidence suggests that memory representations of familiar faces may exaggerate distinctive information as do caricatures (G. Rhodes, S. Brennan, & S. Carey, Cognitive Psychology, 1987). Therefore caricatures should be effective representations of faces and should yield a right hemisphere processing advantage, as do photographs of faces. Photographs and caricatures of famous faces were presented to the left visual (LVF), the right visual field (RVF), and centrally (CVF), in a name-face verification task. There was a LVF (right hemisphere) advantage for both caricatures and photographs on name-face mismatches but no VF difference for matches. These results were true for both accuracy and reaction time. Processing strategy differences that may account for the difference between matches and mismatches are discussed. Performance was generally better for photographs than for caricatures, irrespective of visual field condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号