首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Results from studies of retrograde amnesia provide much of the evidence for theories of memory consolidation. Retrograde amnesia gradients are often interpreted as revealing the time needed for the formation of long-term memories. The rapid forgetting observed after many amnestic treatments, including protein synthesis inhibitors, and the parallel decay seen in long-term potentiation experiments are presumed to reveal the duration of short-term memory processing. However, there is clear and consistent evidence that the time courses obtained in these amnesia experiments are highly variable within and across experiments and treatments. The evidence is inconsistent with identification of basic temporal properties of memory consolidation. Alternative views include modulation of memory and emphasize the roles that hormones and neurotransmitters have in regulating memory formation. Of related interest, converging lines of evidence suggest that inhibitors of protein synthesis and of other biochemical processes act on modulators of memory formation rather than on mechanisms of memory formation. Based on these findings, memory consolidation and reconsolidation studies might better be identified as memory modulation and "remodulation" studies. Beyond a missing and perhaps unattainable time constant of memory consolidation, some current views of memory consolidation assume that memories, once formed, are generally unmodifiable. It is this perspective that appears to have led to the recent interest in memory reconsolidation. But the view adopted here is that memories are continually malleable, being updated by new experiences and, at the same time, altering the memories of later experiences. Studies of memory remodulation offer promise of understanding the neurobiological bases by which new memories are altered by prior experiences and by which old memories are altered by new experiences.  相似文献   

2.
When administered near the time of training, protein synthesis inhibitors such as anisomycin impair later memory. A common interpretation of these findings is that memory consolidation requires new protein synthesis initiated by training. However, recent findings support an alternative interpretation that abnormally large increases in neurotransmitter release after injections of anisomycin may be responsible for producing amnesia. In the present study, a local anesthetic was administered prior to anisomycin injections in an attempt to mitigate neurotransmitter actions and thereby attenuate the resulting amnesia. Rats received lidocaine and anisomycin injections into the amygdala 130 and 120 min, respectively, prior to inhibitory avoidance training. Memory tests 48 h later revealed that lidocaine attenuated anisomycin-induced amnesia. In other rats, in vivo microdialysis was performed at the site of amygdala infusion of lidocaine and anisomycin. As seen previously, anisomycin injections produced large increases in release of norepinephrine in the amygdala. Lidocaine attenuated the anisomycin-induced increase in release of norepinephrine but did not reverse anisomycin inhibition of protein synthesis, as assessed by c-Fos immunohistochemistry. These findings are consistent with past evidence suggesting that anisomycin causes amnesia by initiating abnormal release of neurotransmitters in response to the inhibition of protein synthesis.  相似文献   

3.
A major component of consolidation theory holds that protein synthesis is required to produce the synaptic modification needed for long-term memory storage. Protein synthesis inhibitors have played a pivotal role in the development of this theory. However, these commonly used drugs have unintended effects that have prompted some to reevaluate the role of protein synthesis in memory consolidation. Here we review the role of protein synthesis in memory formation as proposed by consolidation theory calling special attention to the controversy involving the non-specific effects of a group of protein synthesis inhibitors commonly used to study memory formation in vivo. We argue that molecular and genetic approaches that were subsequently applied to the problem of memory formation confirm the results of less selective pharmacological studies. Thus, to a certain extent, the debate over the role of protein synthesis in memory based on interpretational difficulties inherent to the use of protein synthesis inhibitors may be somewhat moot. We conclude by presenting avenues of research we believe will best provide answers to both long-standing and more recent questions facing field of learning and memory.  相似文献   

4.
Interference with activity of numerous cerebral structures produces memory deficiencies; in many instances, however, when animals are over-trained such interference becomes innocuous. Systemic administration of protein synthesis inhibitors impairs long-term retention; this effect has been interpreted to mean that protein synthesis is required for memory consolidation, though little is known about the effect of protein synthesis inhibitors on memory of enhanced learning in the rat. To further analyze the protective effect of enhanced learning against amnesic treatments, groups of Wistar rats were trained in a one-trial step-through inhibitory avoidance task, using different intensities of foot-shock during training. Cycloheximide (CXM; 2.8 mg/kg), an inhibitor of protein synthesis, was injected either 30 min before training or immediately after training. Twenty-four hours after training retention latencies were recorded. Our data showed that both pre- and post-training administration of CXM produced amnesia in those groups that had been trained with relatively low foot-shock intensities, but no impairment in retention was observed when relatively high intensities of foot-shock were administered. These and similar results lead us to conclude that protein synthesis inhibitors may interfere with memory consolidation, but their effect disappears when animals are submitted to an enhanced learning experience, calling into question the idea that protein synthesis is required for memory consolidation.  相似文献   

5.
Investigations into the mechanisms of memory formation have abided by the central tenet of the consolidation theory-that memory formation occurs in stages which differ in their requirement for protein synthesis. The current most widely accepted hypothesis posits that new memories are encoded as neural activity-induced changes in synaptic efficacy, and stabilization of these changes requires de novo protein synthesis. However, the basic assumptions of this view have been challenged by concerns regarding the specificity of the effects of the protein synthesis inhibitors used to support the claim. Studies on immediate-early genes (IEGs), in particular Arc, provide a distinct and independent perspective on the issue of the requirement of new protein synthesis in synaptic plasticity and memory consolidation. The IEG Arc and its protein are dynamically induced in response to neuronal activity, and are directly involved in synaptic plasticity and memory consolidation. Although we provide extensive data on Arc's properties to address the requirement of genomic and proteomic responses in memory formation, Arc is merely one element in a network of genes that interact in a coordinated fashion to serve memory consolidation. From gene expression and other studies, we propose the view that the stabilization of a memory trace is a continuous and ongoing process, which does not have a discrete endpoint and cannot be reduced to a single deterministic "molecular cascade". Rather, memory traces are maintained within metastable networks, which must integrate and update past traces with new ones. Such an updating process may well recruit and use many of the plasticity mechanisms necessary for the initial encoding of memory.  相似文献   

6.
Many behavioral and electrophysiological studies in animals and humans have suggested that sleep and circadian rhythms influence memory consolidation. In rodents, hippocampus-dependent memory may be particularly sensitive to sleep deprivation after training, as spatial memory in the Morris water maze is impaired by rapid eye movement sleep deprivation following training. Spatial learning in the Morris water maze, however, requires multiple training trials and performance, as measured by time to reach the hidden platform is influenced by not only spatial learning but also procedural learning. To determine if sleep is important for the consolidation of a single-trial, hippocampus-dependent task, we sleep deprived animals for 0–5 and 5–10 h after training for contextual and cued fear conditioning. We found that sleep deprivation from 0–5 h after training for this task impaired memory consolidation for contextual fear conditioning whereas sleep deprivation from 5–10 h after training had no effect. Sleep deprivation at either time point had no effect on cued fear conditioning, a hippocampus-independent task. Previous studies have determined that memory consolidation for fear conditioning is impaired when protein kinase A and protein synthesis inhibitors are administered at the same time as when sleep deprivation is effective, suggesting that sleep deprivation may act by modifying these molecular mechanisms of memory storage.  相似文献   

7.
Memory consolidation and reconsolidation require the induction of protein synthesis in some areas of the brain. Here, we show that infusion of the protein synthesis inhibitors anisomycin, emetine and cycloheximide in the entorhinal cortex immediately but not 180 min or 360 min after training in an object recognition learning task hinders long-term memory retention without affecting short-term memory or behavioral performance. Inhibition of protein synthesis in the entorhinal cortex after memory reactivation involving either a combination of familiar and novel objects or two familiar objects does not affect retention. Our data suggest that protein synthesis in the entorhinal cortex is necessary early after training for consolidation of object recognition memory. However, inhibition of protein synthesis in this cortical region after memory retrieval does not seem to affect the stability of the recognition trace.  相似文献   

8.
A protein synthesis inhibitor, anisomycin (ANI), and an inhibitor of glycoprotein synthesis, 2-deoxygalactose (2-D-gal), were used to investigate memory consolidation following visual categorization training in 2-day-old chicks. ANI (0.6 micromole/chick) and 2-D-gal (40 micromoles/chick) were injected intracerebrally at different time intervals from 1 hr before to 23 hr after the training. Retention was tested 24 hr post-training. Both ANI and 2-D-gal injections revealed two periods of memory sensitivity to pharmacological intervention. ANI impaired retention when injected from 5 min before to 30 min after the training or from 4 hr to 5 hr post-training, thus demonstrating that consolidation of long-term memory in this task requires two periods of protein synthesis. 2-D-Gal first produced an amnesia when it was injected in the interval from 5 min before to 5 min after the training. Injections made between 5 min and 5 hr post-training were without effect on the retention. The second period of memory impairment by 2-D-gal started at 5 hr post-training and lasted until 21 hr after the training. Administration of 2-D-gal made 23 hr after the training did not influence retention in the test at either 24 hr or 26 hr. These results are consistent with the hypothesis that two waves of protein and glycoprotein synthesis are necessary for the formation of long-term memory. The prolonged duration of performance impairment by 2-D-gal in the present task might reflect an extended memory consolidation period for a categorization form of learning.  相似文献   

9.
Retrieving a consolidated memory--by exposing an animal to the learned stimulus but not to the associated reinforcement--leads to two opposing processes: one that weakens the old memory as a result of extinction learning, and another that strengthens the old, already-consolidated memory as a result of some less well-understood form of learning. This latter process of memory strengthening is often referred to as "reconsolidation", since protein synthesis can inhibit this form of memory formation. Although the behavioral phenomena of the two antagonizing forms of learning are well documented, the mechanisms behind the corresponding processes of memory formation are still quite controversial. Referring to results of extinction/reconsolidation experiments in honeybees, we argue that two opposing learning processes--with their respective consolidation phases and memories--are initiated by retrieval trials: extinction learning and reminder learning, the latter leading to the phenomenon of spontaneous recovery from extinction, a process that can be blocked with protein synthesis inhibition.  相似文献   

10.
11.
12.
The antibiotic anisomycin (ANP), a protein synthesis inhibitor, was used to investigate the time-related changes in protein synthesis following passive avoidance training in the day-old chick. Retention of memory for this simple learning task is known to be prevented by protein synthesis inhibitors within the first hour posttraining. Here we report a second, later time window during which inhibition of protein synthesis results in amnesia following one-trial passive avoidance training. Birds were given bilateral intracranial injections of ANI (10 μl/hemisphere of a 30 mM solution) at various times relative to training and tested 24 h later. Injections given between 0.5 h prior to 1.5 h post-training or 4-5 h posttraining, but not at later or at intervening times, resulted in amnesia. These results are discussed in the context of earlier findings, using the inhibitor of glycoprotein synthesis 2-deoxygalactose, that memory formation shows two glycoprotein-synthesis-dependent periods of sensitivity (Scholey, Rose, Zamani, Beck, and Schachner, 1993). The time windows of susceptibility of ANI and 2-Dgal are consistent with a model in which there are two waves of neural activity following training; during the second, commencing 4 h after training, proteins are synthesized and then glycosylated as part of the establishment of an enduring memory trace.  相似文献   

13.
李欢欢  林文娟 《心理学报》2003,35(4):563-567
神经颗粒素(Neurogranin,NG)是一种新发现的脑特异性蛋白质。它分布在多个脑区,特别在对学习记忆至关重要的脑区海马。该物质自发现以来,许多学者对其生物学作用,特别是与学习记忆的关系进行了大量的研究,并取得了相当的进展。研究表明NG参与了在学习记忆功能中起核心作用的脑内几种蛋白信号传导途径、长时程增强(Long-term potentiation, LTP)和长时程抑制(Long-term depression, LTD)等突触可塑性机制。NG基因敲除后,动物出现学习记忆能力缺陷。因而它可能涉及学习记忆的形成和巩固  相似文献   

14.
Central galanin administration blocks consolidation of spatial learning   总被引:1,自引:0,他引:1  
Galanin is a neuropeptide that inhibits the evoked release of several neurotransmitters, inhibits the activation of intracellular second messengers, and produces deficits in a variety of rodent learning and memory tasks. To evaluate the actions of galanin on encoding, consolidation, and storage/retrieval, galanin was acutely administered to Sprague-Dawley rats at time points before and after training trials in the Morris water maze. Intraventricular administration of galanin up to 3h after subjects had completed daily training trials in the Morris water task impaired performance on the probe trial, indicating that galanin-blocked consolidation. Pretreatment with an adenylate cyclase activator, forskolin, prevented the deficits in distal cue learning produced by galanin. Di-deoxyforskolin, an inactive analog of forskolin, had no effect. These results provide the first evidence that galanin interferes with long-term memory consolidation processes. A potential mechanism by which galanin produces this impairment may involve the inhibition of adenylate cyclase activity, leading to inhibition of downstream molecular events that are necessary for consolidation of long-term memory.  相似文献   

15.
Persistent drug seeking/taking behavior involves the consolidation of memory. With each drug use, the memory may be reactivated and reconsolidated to maintain the original memory. During reactivation, the memory may become labile and susceptible to disruption; thus, molecules involved in plasticity should influence acquisition and/or reconsolidation. Recently, matrix metalloproteinases (MMPs) have been shown to influence neuronal plasticity, presumably by their regulation of extracellular matrix (ECM) molecules involved in synaptic reorganization during learning. We hypothesized that inhibition of MMP activity would impair the acquisition and/or reconsolidation of cocaine-conditioned place preference (CPP) in rats. Intracerebral ventricular (i.c.v.) microinjection of a broad spectrum MMP inhibitor, FN-439, prior to cocaine training suppressed acquisition of CPP and attenuated cocaine-primed reinstatement in extinguished animals. In a separate experiment, the cocaine memory was reactivated on two consecutive days with a cocaine priming injection. On these two days, artificial cerebral spinal fluid (aCSF) or FN-439 was administered either 30 min prior to or 1 min after cocaine-primed reinstatement sessions. Infusion of FN-439 partially impaired retrieval of the cocaine-associated context when given 30 min prior to cocaine. In both groups, however, FN-439 suppressed reinstatement compared with controls on the third consecutive test for cocaine-primed reinstatement, when no FN-439 was given. Control experiments demonstrated that two injections of FN-439 + cocaine given in the home cage, or of FN-439 + saline priming injections in the CPP chambers did not disrupt subsequent cocaine-primed reinstatement. These results show for the first time that (1) MMPs play a critical role in acquisition and reconsolidation of cocaine-induced CPP, and (2) rats demonstrate apparent disruption of reconsolidation by an MMP inhibitor after extinction and while they are under the influence of cocaine during reinstatement.  相似文献   

16.
We have used a combined genetic and pharmacological approach to define the time course of the requirement for protein kinase A (PKA) and protein synthesis in long-term memory for contextual fear conditioning in mice. The time course of amnesia in transgenic mice that express R(AB) and have genetically reduced PKA activity in the hippocampus parallels that observed both in mice treated with inhibitors of PKA and mice treated with inhibitors of protein synthesis. This PKA- and protein synthesis-dependent memory develops between 1 hr and 3 hr after training. By injecting the protein synthesis inhibitor anisomycin or the PKA inhibitor Rp-cAMPs at various times after training, we find that depending on the nature of training, contextual memory has either one or two brief consolidation periods requiring synthesis of new proteins, and each of these also requires PKA. Weak training shows two time periods of sensitivity to inhibitors of protein synthesis and PKA, whereas stronger training exhibits only one. These studies underscore the parallel dependence of long-term contextual memory on protein synthesis and PKA and suggest that different training protocols may recruit a common signaling pathway in distinct ways.  相似文献   

17.
18.
Group I metabotropic glutamate receptors (mGluRs) are involved in memory formation. The Ca2+ signal derived from stimulation of IP3 receptors (IP3Rs) via mGluRs, initiates protein synthesis that is required for memory consolidation and reconsolidation. However it has been suggested that different mechanisms are triggered by mGluR1/5 activation in these two processes. It is also not clear whether the transient amnesia observed after blockade of group I mGluRs after a reminder, results from disturbance of memory reconsolidation or temporal impairment of recall. The aim of this study was to examine more closely the role of mGluR1 in memory consolidation and reconsolidation and to detect differences in the participation of mGluR1 and mGluR5 in memory retrieval after initial training and after the remainder of the task. Our results demonstrate, that in chicks performing a one-trial passive avoidance task, antagonists of mGluR1, mGluR5 and IP3R significantly disturb memory consolidation and reconsolidation. Inhibition of mGluR5 and IP3R also impairs memory recall, whereas mGluR1 do not seem to participate in this process. The presented data suggest that activation of mGluR1 and mGluR5 is necessary for the correct course of memory consolidation and reconsolidation, whereas mGluR5 are additionally involved in retrieval processes dependent on Ca2+ release from IP3 activated intracellular stores.  相似文献   

19.
Fear conditioning has received extensive experimental attention. However, little is known about the molecular mechanisms that underlie fear memory consolidation. Previous studies have shown that long-term potentiation (LTP) exists in pathways known to be relevant to fear conditioning and that fear conditioning modifies neural processing in these pathways in a manner similar to LTP induction. The present experiments examined whether inhibition of protein synthesis, PKA, and MAP kinase activity, treatments that block LTP, also interfere with the consolidation of fear conditioning. Rats were injected intraventricularly with Anisomycin (100 or 300 μg), Rp-cAMPS (90 or 180 μg), or PD098059 (1 or 3 μg) prior to conditioning and assessed for retention of contextual and auditory fear memory both within an hour and 24 hr later. Results indicated that injection of these compounds selectively interfered with long-term memory for contextual and auditory fear, while leaving short-term memory intact. Additional control groups indicated that this effect was likely due to impaired memory consolidation rather than to nonspecific effects of the drugs on fear expression. Results suggest that fear conditioning and LTP may share common molecular mechanisms.  相似文献   

20.
Evidence indicates that activation of the neuronal protein synthesis machinery is required in areas of the brain relevant to memory for consolidation and persistence of the mnemonic trace. Here, we report that inhibition of hippocampal mTOR, a protein kinase involved in the initiation of mRNA translation, immediately or 180min but not 540min after training impairs consolidation of long-term object recognition memory without affecting short-term memory retention or exploratory behavior. When infused into dorsal CA1 after long-term memory reactivation in the presence of familiar objects the mTOR inhibitor rapamycin (RAP) did not affect retention. However, when given immediately after exposing animals to a novel and a familiar object, RAP impaired memory for both of them. The amnesic effect of the post-retrieval administration of RAP was long-lasting, did not happen after exposure to two novel objects or following exploration of the training arena in the absence of other stimuli, suggesting that it was contingent with reactivation of the consolidated trace in the presence of a behaviorally relevant and novel cue. Our results indicate that mTOR activity is required in the dorsal hippocampus for consolidation of object recognition memory and suggest that inhibition of this kinase after memory retrieval in the presence of a particular set of cues hinders persistence of the original recognition memory trace.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号