首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biological order is discussed within the context of the idealist interpretation of quantum mechanics. A quantum mechanism is proposed for quantum speciation and for quantum evolution, in general. It is shown that an extension of neo-Darwinism to include quantum evolution via a quantum mechanism can resolve some of the recent controversies that have rattled evolution theory. It is pointed out that the quantum approach has the further benefit of giving a straightforward insight into the nature of life itself. Experimental support for some aspects of the theory is discussed.  相似文献   

2.
This article discusses the peculiar features of quantum entanglement and quantum non-locality within the algebraic approach to relativistic quantum field theory (RQFT). The debate on the ontology of RQFT is considered in the light of these well-known but little discussed features. In particular, this article examines the ontic structural realist understanding of quantum entanglement and quantum non-locality and its contribution to this debate.  相似文献   

3.
The main goal of quantum logic is the bottom-up reconstruction of quantum mechanics in Hilbert space. Here we discuss the question whether quantum logic is an empirical structure or a priori valid. There are good reasons for both possibilities. First, with respect to the possibility of a rational reconstruction of quantum mechanics, quantum logic follows a priori from quantum ontology and can thus not be considered as a law of nature. Second, since quantum logic allows for a reconstruction of quantum mechanics, self-referential consistency requires that the empirical content of quantum mechanics must be compatible with the presupposed quantum ontology. Hence, quantum ontology contains empirical components that are also contained in quantum logic. Consequently, in this sense quantum logic is also a law of nature.  相似文献   

4.
Order of information plays a crucial role in the process of updating beliefs across time. In fact, the presence of order effects makes a classical or Bayesian approach to inference difficult. As a result, the existing models of inference, such as the belief-adjustment model, merely provide an ad hoc explanation for these effects. We postulate a quantum inference model for order effects based on the axiomatic principles of quantum probability theory. The quantum inference model explains order effects by transforming a state vector with different sequences of operators for different orderings of information. We demonstrate this process by fitting the quantum model to data collected in a medical diagnostic task and a jury decision-making task. To further test the quantum inference model, a new jury decision-making experiment is developed. Using the results of this experiment, we compare the quantum inference model with two versions of the belief-adjustment model, the adding model and the averaging model. We show that both the quantum model and the adding model provide good fits to the data. To distinguish the quantum model from the adding model, we develop a new experiment involving extreme evidence. The results from this new experiment suggest that the adding model faces limitations when accounting for tasks involving extreme evidence, whereas the quantum inference model does not. Ultimately, we argue that the quantum model provides a more coherent account for order effects that was not possible before.  相似文献   

5.
Jeffrey Bub 《Topoi》1991,10(1):27-34
The properties of classical and quantum systems are characterized by different algebraic structures. We know that the properties of a quantum mechanical system form a partial Boolean algebra not embeddable into a Boolean algebra, and so cannot all be co-determinate. We also know that maximal Boolean subalgebras of properties can be (separately) co-determinate. Are there larger subsets of properties that can be co-determinate without contradiction? Following an analysis of Bohrs response to the Einstein-Podolsky-Rosen objection to the complementarity interpretation of quantum mechanics, a principled argument is developed justifying the selection of particular subsets of properties as co-determinate for a quantum system in particular physical contexts. These subsets are generated by sets of maximal Boolean subalgebras, defined in each case by the relation between the quantum state and a measurement (possibly, but not necessarily, the measurement in terms of which we seek to establish whether or not a particular property of the system in question obtains). If we are required to interpret quantum mechanics in this way, then predication for quantum systems is quite unlike the corresponding notion for classical systems.  相似文献   

6.
Standard quantum mechanics unquestionably violates the separability principle that classical physics (be it point-like analytic, statistical, or field-theoretic) accustomed us to consider as valid. In this paper, quantum nonseparability is viewed as a consequence of the Hilbert-space quantum mechanical formalism, avoiding thus any direct recourse to the ramifications of Kochen-Specker’s argument or Bell’s inequality. Depending on the mode of assignment of states to physical systems – unit state vectors versus non-idempotent density operators – we distinguish between strong/relational and weak/deconstructional forms of quantum nonseparability. The origin of the latter is traced down and discussed at length, whereas its relation to the all important concept of potentiality in forming a coherent picture of the puzzling entangled interconnections among spatially separated systems is also considered. Finally, certain philosophical consequences of quantum non-separability concerning the nature of quantum objects, the question of realism in quantum mechanics, and possible limitations in revealing the actual character of physical reality in its entirety are explored.  相似文献   

7.
量子测量实验显示部分经典逻辑规则在量子世界中失效。标准量子逻辑进路通过特有的希尔伯特空间的格运算揭示出一种内在于微观物理学理论的概念框架结构,也即量子力学测量命题的正交补模或弱模格,解释了经典分配律的失效,它在形式化方面十分完美,但在解释方面产生了一些概念混乱。在标准量子逻辑进路之外,赖欣巴赫通过引入"不确定"的第三真值独立地提出一种不同的量子逻辑模型来解释量子实在的特征,不是分配律而是排中律失效,但是他的三值量子逻辑由于缺乏标准量子逻辑的上述优点而被认为与量子力学的概率空间所要求的潜在逻辑有很少联系。本文尝试引入一种新的三值逻辑模型来说明量子实在,它有以下优点:(1)满足卢卡西维茨创立三值逻辑的最初语义学假定;(2)克服赖欣巴赫三值量子逻辑的缺陷;(3)澄清标准量子逻辑遭遇的概念混乱;(4)充分地保留经典逻辑规则,特别是标准量子逻辑主张放弃的分配律。  相似文献   

8.
This paper shows that the non-Boolean logic of quantum measurementsis more naturally represented by a relatively new 4-operationsystem of Boolean fractions—conditional events—thanby the standard representation using Hilbert Space. After therequirements of quantum mechanics and the properties of conditionalevent algebra are introduced, the quantum concepts of orthogonality,completeness, simultaneous verifiability, logical operations,and deductions are expressed in terms of conditional eventsthereby demonstrating the adequacy and efficacy of this formulation.Since conditional event algebra is nearly Boolean and consistsmerely of ordered pairs of standard events or propositions,quantum events and the so-called "superpositions" of statesneed not be mysterious, and are here fully explicated. Conditionalevent algebra nicely explains these non-standard "superpositions"of quantum states as conjunctions or disjunctions of conditionalevents, Boolean fractions, but does not address the so-called"entanglement phenomena" of quantum mechanics, which remainphysically mysterious. Nevertheless, separating the latter phenomenafrom superposition issues adds clarity to the interpretationof quantum entanglement, the phenomenon of influence propagatedat faster than light speeds. With such treacherous possibilitiespresent in all quantum situations, an observer has every reasonto be completely explicit about the environmental–instrumentalconfiguration, the conditions present when attempting quantummeasurements. Conditional event algebra allows such explicationwithout the physical and algebraic remoteness of Hilbert space.  相似文献   

9.
Mark Harris 《Zygon》2023,58(1):183-202
Theological engagement with quantum physics has, to this day, been dominated by the Copenhagen interpretation. However, philosophers and physicists working in the “quantum foundations” field have largely abandoned the Copenhagen view on account of what is widely seen as its troublesome antirealism. Other metaphysical approaches have come to the fore instead, which often take a strongly realist flavor, such as de Broglie-Bohm, or Everett's “Many-Worlds” interpretation. In the spirit of recent quantum foundations work, this article introduces a collection of studies aimed at taking quantum theology “beyond Copenhagen.” The present article advocates a commitment to “quantum fundamentalism,” which could resolve some of the enduring ontological problems faced by existing theological work with quantum mechanics, especially in discussions of quantum special divine action. Taking quantum fundamentalism literally would mean a departure from the Copenhagen interpretation, and the article suggests the need for a new research program to lay the groundwork in the natural theology of quantum foundations.  相似文献   

10.
David Lewis is a natural target for those who believe that findings in quantum physics threaten the tenability of traditional metaphysical reductionism. Such philosophers point to allegedly holistic entities they take both to be the subjects of some claims of quantum mechanics and to be incompatible with Lewisian metaphysics. According to one popular argument, the non-separability argument from quantum entanglement, any realist interpretation of quantum theory is straightforwardly inconsistent with the reductive conviction that the complete physical state of the world supervenes on the intrinsic properties of and spatio-temporal relations between its point-sized constituents. Here I defend Lewis's metaphysical doctrine, and traditional reductionism more generally, against this alleged threat from quantum holism. After presenting the non-separability argument from entanglement, I show that Bohmian mechanics, an interpretation of quantum mechanics explicitly recognized as a realist one by proponents of the non-separability argument, plausibly rejects a key premise of that argument. Another holistic worry for Humeanism persists, however, the trouble being the apparently holistic character of the Bohmian pilot wave. I present a Humean strategy for addressing the holistic threat from the pilot wave by drawing on resources from the Humean best system account of laws.  相似文献   

11.
The use of quantum mechanical concepts in social science is a fairly new phenomenon. This paper uses one of quantum mechanics’ most basic concepts, probability interference, to explain the violation of an important decision theory principle (the ‘sure-thing principle’). We also attempt to introduce other quantum mechanical concepts in relation to the sure-thing principle violation.  相似文献   

12.
Nicholas T. Saunders 《Zygon》2000,35(3):517-544
The recent debates concerning divine action in the context of quantum mechanics are examined with particular reference to the work of William Pollard, Robert J. Russell, Thomas Tracy, Nancey Murphy, and Keith Ward. The concept of a quantum mechanical "event" is elucidated and shown to be at the center of this debate. An attempt is made to clarify the claims made by the protagonists of quantum mechanical divine action by considering the measurement process of quantum mechanics in detail. Four possibilities for divine influence on quantum mechanics are identified and the theological and scientific implications of each discussed. The conclusion reached is that quantum mechanics is not easily reconciled with the doctrine of divine action.  相似文献   

13.
Is the Brain a Quantum Computer?   总被引:1,自引:0,他引:1  
We argue that computation via quantum mechanical processes is irrelevant to explaining how brains produce thought, contrary to the ongoing speculations of many theorists. First, quantum effects do not have the temporal properties required for neural information processing. Second, there are substantial physical obstacles to any organic instantiation of quantum computation. Third, there is no psychological evidence that such mental phenomena as consciousness and mathematical thinking require explanation via quantum theory. We conclude that understanding brain function is unlikely to require quantum computation or similar mechanisms.  相似文献   

14.
The paper compares ontic structural realism in quantum physics with ontic structural realism about space–time. We contend that both quantum theory and general relativity theory support a common, contentful metaphysics of ontic structural realism. After recalling the main claim of ontic structural realism and its physical support, we point out that both in the domain of quantum theory and in the domain of general relativity theory, there are objects whose essential ways of being are certain relations so that these objects do not possess an intrinsic identity. Nonetheless, the qualitative, physical nature of these relations is in the quantum case (entanglement) fundamentally different from the classical, metrical relations treated in general relativity theory.  相似文献   

15.
This paper argues that there are good reasons to adopt a non‐reductive account of states when it comes to quantum mechanics. That is to say, it is argued that there are advantages to thinking about states as sui generis, as reducible to classes of values of quantities, when it comes to the quantum domain. One reason for holding this view is that it seems to improve the prospects for explanation. In more detail, it is argued that there is an “explanatory shortfall” in the quantum domain owing to the failure of value definiteness. To remedy this situation, two proposals are put forward about the nature of the quantum state: Proposal A, that the quantum state is the only first‐order property of quantum systems, Proposal B, that the quantum state is one first‐order property among many. These proposals seem equally good.  相似文献   

16.
Theological thinking is influenced by perspectives on the relation of scientific knowledge to reality. Two paradigms for understanding the nature of human knowledge are considered in relation to quantum mechanics: the subjective-observing perspective of Kant, and the objective-participant perspective of Thomas Aquinas. I discuss whether quantum mechanics necessarily implies a subject centered perspective on reality, and argue, with reference to d'Espagnat's notion of veiled reality, that quantum non-separability challenges this view. I then explore whether the objective-participant perspective of Thomas Aquinas provides a more fruitful context for understanding quantum mechanics. I discuss quantum measurement in terms of the transition from potentiality to actuality, and knowledge as the latent intelligibility of the world realized. However, the negative nature of our knowledge of quantum non-separability also challenges this perspective. Our theological thinking in response to quantum knowledge must therefore proceed tentatively, balancing a via positiva, with a via negativa.  相似文献   

17.
Chuang Liu 《Erkenntnis》1996,45(1):45-68
I argue that categorical realism, contrary to what most believe today, holds for quantum (and indeed for all) objects and substances. The main argument consists of two steps: (i) the recent experimental verification of the AB effect gives strong empirical evidence for taking quantum potentials as physically real (or substantival), which suggests a change of the data upon which any viable interpretation of quantum theory must rely, and (ii) quantum potentials may be consistently taken as the categorical properties of quantum objects so that categorical realism can be restored.  相似文献   

18.
There are at least two general theories for building probabilistic-dynamical systems: one is Markov theory and another is quantum theory. These two mathematical frameworks share many fundamental ideas, but they also differ in some key properties. On the one hand, Markov theory obeys the law of total probability, but quantum theory does not; on the other hand, quantum theory obeys the doubly stochastic law, but Markov theory does not. Therefore, the decision about whether to use a Markov or a quantum system depends on which of these laws are empirically obeyed in an application. This article derives two general methods for testing these theories that are parameter free, and presents a new experimental test. The article concludes with a review of experimental findings from cognitive psychology that evaluate these two properties.  相似文献   

19.
In this paper we discuss the use of quantum mechanics to model psychological experiments, starting by sharply contrasting the need of these models to use quantum mechanical nonlocality instead of contextuality. We argue that contextuality, in the form of quantum interference, is the only relevant quantum feature used. Nonlocality does not play a role in those models. Since contextuality is also present in classical models, we propose that classical systems be used to reproduce the quantum models used. We also discuss how classical interference in the brain may lead to contextual processes, and what neural mechanisms may account for it.  相似文献   

20.
Miller  Elizabeth 《Synthese》2020,197(10):4187-4206
Synthese - A simple argument proposes a direct link between realism about quantum mechanics and one kind of metaphysical holism: if elementary quantum theory is at least approximately true, then...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号