首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate maturational plasticity of fluid cognition systems, functional brain imaging was undertaken in healthy 8-19 year old participants while completing visuospatial relational reasoning problems similar to Raven's matrices and current elementary grade math textbooks. Analyses revealed that visuospatial relational reasoning across this developmental age range recruited activations in the superior parietal cortices most prominently, the dorsolateral prefrontal, occipital-temporal, and premotor/supplementary cortices, the basal ganglia, and insula. There were comparable activity volumes in left and right hemispheres for nearly all of these regions. Regression analyses indicated increasing activity predominantly in the superior parietal lobes with developmental age. In contrast, multiple anterior neural systems showed significantly less activity with age, including dorsolateral and ventrolateral prefrontal, paracentral, and insula cortices bilaterally, basal ganglia, and particularly large clusters in the midline anterior cingulate/medial frontal cortex, left middle cingulate/supplementary motor cortex, left insula-putamen, and left caudate. Findings suggest that neuromaturational changes associated with visuospatial relational reasoning shift from a more widespread fronto-cingulate-striatal pattern in childhood to predominant parieto-frontal activation pattern in late adolescence.  相似文献   

2.
The posterior parietal cortex has been traditionally associated with coordinate transformations necessary for interaction with the environment and with visual-spatial attention. More recently, involvement of posterior parietal cortex in other cognitive functions such as working memory and task learning has become evident. Neurophysiological experiments in non-human primates and human imaging studies have revealed neural correlates of memory and learning at the single neuron and at the brain network level. During working memory, posterior parietal neurons continue to discharge and to represent stimuli that are no longer present. This activation resembles the responses of prefrontal neurons, although important differences have been identified in terms of the ability to resist stimulation by distracting stimuli, which is more evident in the prefrontal than the posterior parietal cortex. Posterior parietal neurons also become active during tasks that require the organization of information into larger structured elements and their activity is modulated according to learned context-dependent rules. Neural correlates of learning can be observed in the mean discharge rate and spectral power of neuronal spike trains after training to perform new task sets or rules. These findings demonstrate the importance of posterior parietal cortex in brain networks mediating working memory and learning.  相似文献   

3.
In this functional MRI experiment, encoding of objects was associated with activation in left ventrolateral prefrontal/insular and right dorsolateral prefrontal and fusiform regions as well as in the left putamen. By contrast, correct recognition of previously learned objects (R judgments) produced activation in left superior frontal, bilateral inferior frontal, and right cerebellar regions, whereas correct rejection of distractor objects (N judgments) was associated with activation in bilateral prefrontal and anterior cingulate cortices, in right parietal and cerebellar regions, in the left putamen, and in the right caudate nucleus. The R minus N comparison showed activation in the left lateral prefrontal cortex and in bilateral cingulate cortices and precunei, while the N minus R comparison did not reveal any positive signal change. These results support the view that similar regions of the frontal lobe are involved in episodic encoding and retrieval processes, and that the successful episodic retrieval of newly learned objects is mainly based on a frontoparietal network.  相似文献   

4.
Much of our behavior is guided by rules, or prescribed guides for action. In this review, I consider the current state of knowledge of how rules are learned, stored in the brain, and retrieved and used as the need arises. The focus is primarily on studies in humans, but the review is informed by relevant studies in nonhuman primates. Ventrolateral prefrontal cortex (VLPFC) has been implicated in rule learning, retrieval from long-term memory, and on-line maintenance during task preparation. Interactions between VLPFC and temporal cortex are required for rule retrieval in nonhuman primates, and brain imaging findings in humans suggest that rule knowledge is stored in the posterior middle temporal gyrus. Dorsolateral PFC appears to be more closely related to rule-based response selection than to rule retrieval. An important task for the future is to explain how PFC, basal ganglia, and temporal, parietal, and motor cortices interact to produce rule-guided behavior.  相似文献   

5.
Goel V  Dolan RJ 《Cognition》2004,93(3):B109-B121
While inductive and deductive reasoning are considered distinct logical and psychological processes, little is known about their respective neural basis. To address this issue we scanned 16 subjects with fMRI, using an event-related design, while they engaged in inductive and deductive reasoning tasks. Both types of reasoning were characterized by activation of left lateral prefrontal and bilateral dorsal frontal, parietal, and occipital cortices. Neural responses unique to each type of reasoning determined from the Reasoning Type (deduction and induction) by Task (reasoning and baseline) interaction indicated greater involvement of left inferior frontal gyrus (BA 44) in deduction than induction, while left dorsolateral (BA 8/9) prefrontal gyrus showed greater activity during induction than deduction. This pattern suggests a dissociation within prefrontal cortex for deductive and inductive reasoning.  相似文献   

6.
Several brain regions associated with analogical mapping were identified using (15)O-positron emission tomography with 12 normal, high intelligence adults. Each trial presented during scanning consisted of a source picture of colored geometric shapes, a brief delay, and a target picture of colored geometric shapes. Analogous pictures did not share similar geometric shapes but did share the same system of abstract visuospatial relations. Participants judged whether each source-target pairing was analogous (analogy condition) or identical (literal condition). The results of the analogy-literal comparison showed activation in the dorsomedial frontal cortex and in the left hemisphere; the inferior, middle, and medial frontal cortices; the parietal cortex; and the superior occipital cortex. Based on these results as well as evidence from relevant cognitive neuroscience studies of reasoning and of executive working memory, we hypothesize that analogical mapping is mediated by the left prefrontal and inferior parietal cortices.  相似文献   

7.
Rapid advances have recently been made in understanding how value-based decision-making processes are implemented in the brain. We integrate neuroeconomic and computational approaches with evidence on the neural correlates of value and experienced pleasure to describe how systems for valuation and decision-making are organized in the prefrontal cortex of humans and other primates. We show that the orbitofrontal and ventromedial prefrontal (VMPFC) cortices compute expected value, reward outcome and experienced pleasure for different stimuli on a common value scale. Attractor networks in VMPFC area 10 then implement categorical decision processes that transform value signals into a choice between the values, thereby guiding action. This synthesis of findings across fields provides a unifying perspective for the study of decision-making processes in the brain.  相似文献   

8.
A central circuit of the mind   总被引:1,自引:0,他引:1  
The methodologies of cognitive architectures and functional magnetic resonance imaging can mutually inform each other. For example, four modules of the ACT-R (adaptive control of thought - rational) cognitive architecture have been associated with four brain regions that are active in complex tasks. Activity in a lateral inferior prefrontal region reflects retrieval of information in a declarative module; activity in a posterior parietal region reflects changes to problem representations in an imaginal module; activity in the anterior cingulate cortex reflects the updates of control information in a goal module; and activity in the caudate nucleus reflects execution of productions in a procedural module. Differential patterns of activation in such central regions can reveal the time course of different components of complex cognition.  相似文献   

9.
An event-related potentials (ERP) study was undertaken to examine the role of prefrontal and parietal association cortices on selective attention and short-term memory functions in a duration discrimination task. Subjects performed better when discriminating the first stimulus relative to the second and not the reverse. Two contingent negative variations (CNV) were obtained for each stimulus duration at prefrontal regions, as well as two P300s at parietal regions. The CNV(S1) component recorded during the first stimulus (S1) appeared to be involved in selective attention at bilateral sites, while the P300(S1) component in the left hemisphere may be implicated in retaining it. The CNV(S2) wave, displayed during the second stimulus (S2), at bilateral sites and the right-sided P300(S2) wave seem to be implicated in working memory. The results indicate that recorded activity at prefrontal and parietal association cortices is tightly linked to task parameters and behavioral performances.  相似文献   

10.
经济决策包含两个传统问题:跨期选择和风险决策。跨期选择分为冲动决策和自我控制,当冲动决策时,优先激活了与中脑多巴胺神经元相联系的旁边缘区域,包括伏隔核、眶额皮层中部和前额叶中部;自我控制即选择延迟决策时大脑双侧前额叶和后顶叶皮层神经活动增强。在风险和不确定性条件下,大脑皮层和杏仁核与风险决策联系密切。  相似文献   

11.
Currently, many theories highlight either representational memory or rule representation as the hallmark of prefrontal function. Neurophysiological findings in the primate dorsolateral prefrontal cortex indicate that both features may characterize prefrontal processing. Neurons in the dorsolateral prefrontal cortex encode information in working memory, and this information is represented when relevant to the rules governing performance in a task. In this review, we discuss recent reports of encoding in primate and rat orbitofrontal regions indicating that these features also characterize activity in the orbitofrontal subdivision of the prefrontal cortex. These data indicate that (1) neural activity in the orbitofrontal cortex links the current incentive value of reinforcers to cues, rather than representing the physical features of cues or associated reinforcers; (2) this incentive-based information is represented in the orbitofrontal cortex when it is relevant to the rules guiding performance in a task; and (3) incentive information is also represented in the orbitofrontal cortex in working memory during delays when neither the cues nor reinforcers are present. Therefore, although the orbitofrontal cortex appears to be uniquely specialized to process incentive or motivational information, it may be integrated into a more global framework of prefrontal function characterized by representational encoding of performance-relevant information.  相似文献   

12.
Although task switching is often considered one of the fundamental abilities underlying executive functioning and general intelligence, there is little evidence that switching is a unitary construct and little evidence regarding the relationship between brain activity and switching performance. We examined individual differences in multiple types of attention shifting in order to determine whether behavioral performance and fMRI activity are correlated across different types of shifting. The participants (n=39) switched between objects and attributes both when stimuli were perceptually available (external) and when stimuli were stored in memory (internal). We found that there were more switchrelated activations in many regions associated with executive control—including the dorsolateral and medial prefrontal and parietal cortices—when behavioral switch costs were higher (poor performance). Conversely, activation in the ventromedial prefrontal cortex (VMPFC) and the rostral anterior cingulate was consistently correlated with good performance, suggesting a general role for these areas in efficient attention shifting. We discuss these findings in terms of a model of cognitive-emotional interaction in attention shifting, in which reward-related signals in the VMPFC guide efficient selection of tasks in the lateral prefrontal and parietal cortices.  相似文献   

13.
This review describes the functional anatomy of word comprehension and production. Data from functional neuroimaging studies of normal subjects are used to determine the distributed set of brain regions that are engaged during particular language tasks and data from studies of patients with neurological damage are used to determine which of these regions are necessary for task performance. This combination of techniques indicates that the left inferior temporal and left posterior inferior parietal cortices are required for accessing semantic knowledge; the left posterior basal temporal lobe and the left frontal operculum are required for translating semantics into phonological output and the left anterior inferior parietal cortex is required for translating orthography to phonology. Further studies are required to establish the specific functions of the different regions and how these functions interact to provide our sophisticated language system.  相似文献   

14.
刘玲  李荆广  宋宜颖  刘嘉 《心理学报》2012,44(4):446-458
为探索注意控制能力个体差异的遗传来源, 当前研究主要关注儿茶酚胺氧位甲基转移酶(catechol-O-Methyltransferase, COMT)基因对参与注意控制加工的前额叶脑区的调控作用。为进一步回答COMT基因是否也对全脑范围的注意脑区具有调控作用, 本文对17篇遗传影像学研究进行元分析。结果发现, COMT基因Val/Val (vv)基因型的被试在注意控制任务下, 不仅前额叶脑区的激活水平高于Met/Met(mm)基因型的被试, 在前扣带回和后扣带回等前额叶之外的脑区激活水平也高于mm基因型的被试, 而且在这些脑区的效应值(vv>mm)都较大(Cohen’s d > 0.8)。由此, 元分析结果表明:COMT基因不仅调控前额叶脑区, 而且对形成注意控制网络的多个脑区都有调控效应。此结果提示注意控制能力的个体差异可能部分的来自于COMT基因对注意控制网络的调控作用。  相似文献   

15.
A rodent model of directed attention has been developed based upon behavioral analysis of contralateral neglect, pharmacological manipulations, and anatomical analysis of neural circuitry. In each of these three domains the rodent model exhibits striking similarities to humans. We hypothesize that there is a specific thalamo-cortical-basal ganglia network that subserves spatial attentional functions. Key components of this network are medial agranular and posterior parietal cortex, dorsocentral striatum, and the lateral posterior thalamic nucleus. Several issues need to be addressed before we can hope to realistically understand or model the functions of this network. Among these are the roles of medial versus lateral posterior parietal cortex; cholinergic mechanisms in attention; interhemispheric interactions; the role of synchronous firing at the cortical, striatal, and thalamic levels; interactions between cortical and thalamic projections to the striatum; interactions between cortical and nigral inputs to the thalamus; the role of collicular inputs to the lateral posterior thalamic nucleus; the role of cerebral cortex versus superior colliculus in driving the motor output expressed as orienting behavior during directed attention; the extent to which the circuitry we describe for directed attention also plays a role in other forms of attention.  相似文献   

16.
Cats were trained on a time-discrimination task in which different periods of bodily confinement served as discriminanda for go-left/go-right responding. Lesions of gyrus proreus or the associated anteroventral part of nucleus caudatus impaired relearning in this situation. After reacquisition, animals with caudate lesions received proreal ablations and animals with cortical damage received caudate lesions; both additional lesions caused reappearance of the deficit. The absence of external stimuli to signal locus of reinforcement at the moment of spatial choice may have been crucial for eliciting the deficit. The data support the notion that the prefrontal cortex and the anatomically related part of the caudate nucleus participate in similar behaviors.  相似文献   

17.
Eighteen healthy young adults underwent event-related (ER) functional magnetic resonance imaging (fMRI) of the brain while performing a visual category learning task. The specific category learning task required subjects to extract the rules that guide classification of quasi-random patterns of dots into categories. Following each classification choice, visual feedback was presented. The average hemodynamic response was calculated across the eighteen subjects to identify the separate networks associated with both classification and feedback. Random-effects analyses identified the different networks implicated during the classification and feedback phases of each trial. The regions included prefrontal cortex, frontal eye fields, supplementary motor and eye fields, thalamus, caudate, superior and inferior parietal lobules, and areas within visual cortex. The differences between classification and feedback were identified as (i) overall higher volumes and signal intensities during classification as compared to feedback, (ii) involvement of the thalamus and superior parietal regions during the classification phase of each trial, and (iii) differential involvement of the caudate head during feedback. The effects of learning were then evaluated for both classification and feedback. Early in learning, subjects showed increased activation in the hippocampal regions during classification and activation in the heads of the caudate nuclei during the corresponding feedback phases. The findings suggest that early stages of prototype-distortion learning are characterized by networks previously associated with strategies of explicit memory and hypothesis testing. However as learning progresses the networks change. This finding suggests that the cognitive strategies also change during prototype-distortion learning.  相似文献   

18.
Classic cognitive theory conceptualizes executive functions as involving multiple specific domains, including initiation, inhibition, working memory, flexibility, planning, and vigilance. Lesion and neuroimaging experiments over the past two decades have suggested that both common and unique processes contribute to executive functions during higher cognition. It has been suggested that a superordinate fronto–cingulo–parietal network supporting cognitive control may also underlie a range of distinct executive functions. To test this hypothesis in the largest sample to date, we used quantitative meta-analytic methods to analyze 193 functional neuroimaging studies of 2,832 healthy individuals, ages 18–60, in which performance on executive function measures was contrasted with an active control condition. A common pattern of activation was observed in the prefrontal, dorsal anterior cingulate, and parietal cortices across executive function domains, supporting the idea that executive functions are supported by a superordinate cognitive control network. However, domain-specific analyses showed some variation in the recruitment of anterior prefrontal cortex, anterior and midcingulate regions, and unique subcortical regions such as the basal ganglia and cerebellum. These results are consistent with the existence of a superordinate cognitive control network in the brain, involving dorsolateral prefrontal, anterior cingulate, and parietal cortices, that supports a broad range of executive functions.  相似文献   

19.
默认网络相关研究表明,生物进化的社会适应性建构了自我的认知神经基础,与James的自我结构相对应:主我位于后部扣带回,精神自我位于内侧前额叶,身体自我位于顶下小叶和脑岛; 并且与内侧前额叶、顶下小叶和后部扣带回之间的信息传递相关。个体在基线水平的大脑活动表明,自我是通过后部扣带回接收并调节全脑(包括表征客我的脑区)信息流,随时准备将外界满足需要有利于个体生存的资源纳入其中的神经系统。对于探讨“认识自我”这个古老的哲学问题与现代认知神经科学之间的关系有重要意义。  相似文献   

20.
It is proposed that memory is organized into event-based, knowledge-based, and rule-based memory systems. Furthermore, each system is composed of the same set of multiple attributes and characterized by a set of process oriented operating characteristics that are mapped onto multiple neural regions and interconnected neural circuits. Based on this theoretical model of memory, it is possible to investigate the independence and interaction among brain regions between any two systems for any of the proposed attributes or processes. This applies also to the investigation of independence and interactions between any two attributes within a system and between processes associated with a system for any of the proposed attributes. In this article, research evidence is presented to suggest that there are both dissociations and interactions between the hippocampus and caudate nucleus in mediating spatial and response attributes within the event-based memory system, between the hippocampus and the parietal cortex in subserving the spatial attribute within the event-based and knowledge-based memory systems, and between the hippocampus and the prefrontal cortex in subserving the spatial attribute within the event-based and rule-based memory systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号