首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ellis, Ansorge and Lavidor (2007) [Ellis, A.W., Ansorge, L., & Lavidor, M. (2007). Words, hemispheres, and dissociable subsystems: The effects of exposure duration, case alternation, priming and continuity of form on word recognition in the left and right visual fields. Brain and Language, 103, 292–303.] presented three experiments investigating the effects of exposure duration and format (normal vs mixed or alternating case) on the recognition of words presented in the left and right visual fields. The experiments were conducted within the framework of ‘dissociable neural subsystems theory’ developed by Marsolek and colleagues. Marsolek and Deason (2007) [Marsolek, C.J. & Deason, R.G. (2007). Hemispheric asymmetries in visual word-form processing: Progress, conflict, and evaluating theories. Brain and Language, 103, 304–307.] offer some reflections on our paper, including alternative interpretations of some of our findings. We respond to those reflections in this reply.  相似文献   

2.
Right-handed participants respond more quickly and more accurately to written words presented in the right visual field (RVF) than in the left visual field (LVF). Previous attempts to identify the neural basis of the RVF advantage have had limited success. Experiment 1 was a behavioral study of lateralized word naming which established that the words later used in Experiment 2 showed a reliable RVF advantage which persisted over multiple repetitions. In Experiment 2, the same words were interleaved with scrambled words and presented in the LVF and RVF to right-handed participants seated in an MEG scanner. Participants read the real words silently and responded "pattern" covertly to the scrambled words. A beamformer analysis created statistical maps of changes in oscillatory power within the brain. Those whole-brain maps revealed activation of the reading network by both LVF and RVF words. Virtual electrode analyses used the same beamforming method to reconstruct the responses to real and scrambled words in three regions of interest in both hemispheres. The middle occipital gyri showed faster and stronger responses to contralateral than to ipsilateral stimuli, with evidence of asymmetric channeling of information into the left hemisphere. The left mid fusiform gyrus at the site of the 'visual word form area' responded more strongly to RVF than to LVF words. Activity in speech-motor cortex was lateralized to the left hemisphere, and stronger to RVF than LVF words, which is interpreted as representing the proximal cause of the RVF advantage for naming written words.  相似文献   

3.
We investigated hemispheric differences and inter-hemispheric transfer of facilitation in automatic semantic priming, using prime-target pairs composed of words of the same category but not associated (e.g. skirt-glove), and a blank-target baseline condition. Reaction time and accuracy were measured at short (300 ms) intervals between prime and target onsets, using a go/no-go task to discriminate between word or non-word targets. Reaction times were facilitated more for target words presented in the right visual field (RVF) compared to the left visual field (LVF), and targets presented in RVF were primed in both visual fields, whereas targets presented in LVF were primed by primes in the LVF only. These results suggest that both hemispheres are capable of automatic priming at very short stimulus onset asymmetries (SOA), but cross-hemisphere priming occurs only in the left hemisphere.  相似文献   

4.
The accuracy with which observers judged whether two words belonged to the same semantic category was determined from a detection-theoretic analysis ofsame-different judgments. In Experiment 1, one word was presented centrally and the other word in either the left visual field (LVF) or the right visual field (RVF); in Experiment 2, both words were presented to either the LVF or the RVF. In order to obtain receiver-operating characteristics (ROCs) of performance, observers were asked to rate their confidence that the two words belonged to the same semantic category. Two models of the decision strategy were fitted to the obtained characteristics: a differencing model, in which the decision variable was the difference between the two observations; and an optimal model, in which each observation was judged in relation to a criterion. In both experiments, the optimal model provided a better fit than the differencing model to the obtained characteristics. Maximum-likelihood estimates of both the criterion-free parameter,d′, and the area under the operating characteristic,p(A), were greater for words presented in the RVF than for those presented in the LVF.  相似文献   

5.
This experiment enquired: (1) whether right visual field (RVF) recognition superiority was greater in bilateral than in unilateral word presentation; (2) whether left field-favouring attentional or recall sets could be induced by presenting left visual field (LVF) words 20 msec prior to RVF words or by instructions to report LVF words prior to RVF words. Results showed: (1) all conditions studied yielded significant RVF superiority; (2) RVF superiority magnitude was significantly greater in bilateral than in unilateral presentation, suggesting the tenability of hypotheses that different mechanisms operate in these conditions; (3) neither earlier delivery nor earlier report of LVF words altered the pattern of RVF superiority in bilateral presentation, the later result demonstrating that differential receptive organization rather than differential recall of the two stimuli is responsible for RVF superiority in bilateral presentation.  相似文献   

6.
Readers acquire information outside the current eye fixation. Previous research indicates that having only the fixated word available slows reading, but when the next word is visible, reading is almost as fast as when the whole line is seen. Parafoveal-on-foveal effects are interpreted to reflect that the characteristics of a parafoveal word can influence fixation on a current word. Prior studies also show that words presented to the right visual field (RVF) are processed faster and more accurately than words in the left visual field (LVF). This asymmetry results either from an attentional bias, reading direction, or the cerebral asymmetry of language processing. We used eye-fixation-related potentials (EFRP), a technique that combines eye-tracking and electroencephalography, to investigate visual field differences in parafoveal-on-foveal effects. After a central fixation, a prime word appeared in the middle of the screen together with a parafoveal target that was presented either to the LVF or to the RVF. Both hemifield presentations included three semantic conditions: the words were either semantically associated, non-associated, or the target was a non-word. The participants began reading from the prime and then made a saccade towards the target, subsequently they judged the semantic association. Between 200 and 280 ms from the fixation onset, an occipital P2 EFRP-component differentiated between parafoveal word and non-word stimuli when the parafoveal word appeared in the RVF. The results suggest that the extraction of parafoveal information is affected by attention, which is oriented as a function of reading direction.  相似文献   

7.
Right-handed adults were asked to identify by name bilaterally presented words and pronounceable nonwords. For words in the normal horizontal format, word length (number of letters) affected left visual hemifield (LVF) but not right visual hemifield (RVF) performance in Experiments 1, 2, 3, 5, and 6. This finding was made for words of high and low frequency (Experiment 6) and imageability (Experiment 5). It also held across markedly different levels of overall performance (Experiments 1 and 2), and across different relative positionings of short and long words in the LVF and RVF (Experiment 3). Experiment 4 demonstrated that the variable affecting LVF performance is the number of letters in a word, not its phonological length. For pronounceable nonwords (Experiment 7) and words in unusual formats (Experiment 8), however, length affected both LVF and RVF performance. The characteristics identified for RVF performance in these experiments also hold for the normal reading system. In this (normal) system the absence of length effects for horizontally formatted words is generally taken to reflect the processes involved in lexical access. Length effects in the normal reading system are thought to arise when lexical access for unusually formatted words and for the pronunciation of nonwords requires the short-term storage of information at a graphemic level of analysis. The characteristics of LVF performance indicate that horizontally formatted words presented to the right cerebral hemisphere can only achieve lexical access by a method that requires the short-term storage of graphemic information. This qualitative difference in methods of lexical access applies regardless of whether the right hemisphere is seen as accessing words in the left hemisphere's lexicon or words in a lexicon of its own.  相似文献   

8.
Different modes of word recognition in the left and right visual fields   总被引:2,自引:1,他引:1  
We confirm previous evidence indicating that word length has a substantial effect on word recognition in the LVF but a much weaker effect in both the RVF and fovea. The nature of encoding in the LVF is not altered when the words are vertically displayed (Experiment 2), and the effect cannot therefore be entirely due to scanning artefact or acuity gradients in peripheral vision. We provide evidence that links the asymmetrical influence of word length directly to hemispheric specialization: left-handers, who as a group are much less consistently lateralized than right-handers are also less affected by word length in the LVF on the average (Experiment 3). This occurs because the asymmetry for certain left-handers is either very weak or, in some cases, is the complete reverse of the asymmetry observed in right-handers. Finally, we demonstrate that the length x field interaction is observed in lexical decisions (Experiment 4) which do not entail pronunciation of written words. There is some indication that concrete, high-imageable words produce a smaller effect of length in the LVF than abstract, low-imageable words, and we discuss this outcome in relation to the proposal that the right hemisphere can sometimes extract a lexical code from letter information. The concept of distinct modes of word recognition in the LVF and RVF clarifies a number of issues in laterality research, and suggests a new approach to evaluating group differences in half-field performance.  相似文献   

9.
Previous studies have reported an interaction between visual field (VF) and word length such that word recognition is affected more by length in the left VF (LVF) than in the right VF (RVF). A reanalysis showed that the previously reported effects of length were confounded with orthographic neighborhood size (N). In three experiments we manipulated length and N in lateralized lexical decision tasks. Results showed that length and VF interacted even with N controlled (Experiment 1); that N affected responses to words in the LVF but not the RVF (Experiment 2); and that when length and N were combined, length only affected performance in the LVF for words with few neighbors.  相似文献   

10.
The cerebral hemispheres have been proposed to engage different word recognition strategies: the left hemisphere implementing a parallel, and the right hemisphere, a sequential, analysis. To investigate this notion, we asked participants to name words with an early or late orthographic uniqueness point (OUP), presented horizontally to their left (LVF), right (RVF), or both fields of vision (BVF). Consistent with past foveal research, Experiment 1 produced a robust facilitatory effect of early OUP for RVF/BVF presentations, indicating the presence of sequential processes in lexical retrieval. The effect was absent for LVF trials, which we argue results from the disadvantaged position of initial letters of words presented in the LVF. To test this proposition, Experiment 2 assessed the discriminability of various letter positions in the visual fields using a bar-probe task. The obtained error functions highlighted the poor discriminability of initial letters in the LVF and latter letters in the RVF. To confirm that this asymmetry in initial letter acuity was responsible for the absent OUP effect for LVF presentations, Experiment 3 replicated Experiment 1 using vertical stimulus presentations. Results indicated a marked facilitatory effect of early OUP across visual fields, supporting our contention that the lack of OUP effect for LVF presentations in Experiment 1 resulted from poor discriminability of the initial letters. These findings confirm the presence of sequential processes in both left and right hemisphere word recognition, casting doubt on parallel models of word processing.  相似文献   

11.
It has long been known that the number of letters in a word has more of an effect on recognition speed and accuracy in the left visual field (LVF) than in the right visual field (RVF) provided that the word is presented in a standard, horizontal format. After considering the basis of the length by visual field interaction two further differences between the visual fields/hemispheres are discussed: (a) the greater impact of format distortion (including case alternation) in the RVF than in the LVF and (b) the greater facilitation of lexical decision by orthographic neighbourhood size (N) in the LVF than in the RVF. In the context of split fovea accounts of word recognition, evidence is summarised which indicates that the processing of words presented at fixation is affected by the number of letters to the left of fixation but not by the number of letters to the right and by the number of orthographic neighbours activated by letters to the left of fixation but not by the number of orthographic neighbours activated by letters to the right of fixation. A model of word recognition is presented which incorporates the notion that the left hemisphere has sole access to a mode of word recognition that involves parallel access from letter forms to the visual input lexicon, is disrupted by format distortion, and does not employ top-down support of the letter level by the word level.  相似文献   

12.
Participants report briefly-presented words more accurately when two copies are presented, one in the left visual field (LVF) and another in the right visual field (RVF), than when only a single copy is presented. This effect is known as the 'redundant bilateral advantage' and has been interpreted as evidence for interhemispheric cooperation. We investigated the redundant bilateral advantage in dyslexic adults and matched controls as a means of assessing communication between the hemispheres in dyslexia. Consistent with previous research, normal adult readers in Experiment 1 showed significantly higher accuracy on a word report task when identical word stimuli were presented bilaterally, compared to unilateral RVF or LVF presentation. Dyslexics, however, did not show the bilateral advantage. In Experiment 2, words were presented above fixation, below fixation or in both positions. In this experiment both dyslexics and controls benefited from the redundant presentation. Experiment 3 combined whole words in one visual field with word fragments in the other visual field (the initial and final letters separated by spaces). Controls showed a bilateral advantage but dyslexics did not. In Experiments 1 and 3, the dyslexics showed significantly lower accuracy for LVF trials than controls, but the groups did not differ for RVF trials. The findings suggest that dyslexics have a problem of interhemispheric integration and not a general problem of processing two lexical inputs simultaneously.  相似文献   

13.
A priming experiment was used to investigate Burgess and Simpson's (1988) claim that interhemispheric cooperation plays an essential role in the interpretation of ambiguous text. In doing so, the merits of two models of interhemispheric cooperation, the homotopic inhibition theory (Cook, 1986) and the direct connections model (Collins & Coney, 1998), were examined. Priming of alternative meanings of ambiguous words was measured using homographs and their dominant (e.g., BARK-DOG) and subordinate meanings (e.g., BARK-TREE) as related pairs in a lexical decision task, with normal university students as subjects. Stimulus pairs were temporally separated by stimulus onset asynchronies (SOAs) of 180 and 350 ms and were independently projected to the left or right visual fields (LVF or RVF). At the shorter SOA, priming was restricted to LVF-RVF presentations, with homograph primes directed to the LVF equally facilitating responses to RVF targets which were associated with their dominant and subordinate meanings. This suggests that within 180 ms, a homograph projected to the right hemisphere activates a range of alternative meanings in the left hemisphere. At an SOA of 350 ms, LVF-RVF priming was obtained along with RVF-LVF and RVF-RVF priming. Evidently at this stage of processing, an ambiguous word directed to either hemisphere activates a range of alternative meanings in the contralateral hemisphere, while RVF primes also activate subordinate, but not dominant meanings in the left hemisphere. A homograph directed to the LVF did not activate dominant or subordinate meanings within the right hemisphere at either SOA. Generally, ambiguous words directed to either hemisphere activated a more extensive array of meanings in the contralateral hemisphere than in the hemisphere to which the prime was directed. This confirms the importance of interhemispheric cooperation in generating alternate meanings of ambiguous words. Strong support was found for the direct connections model (Collins & Coney, 1998), but no support for the homotopic inhibition theory (Cook, 1986).  相似文献   

14.
Modes of word recognition in the left and right cerebral hemispheres   总被引:6,自引:5,他引:1  
Four experiments are reported examining the effects of word length on recognition performance in the left and right visual hemifields (LVF, RVF). In Experiments 1 and 2 length affected lexical decision latencies to words presented in the LVF but not to words presented in the RVF. This result was found for both concrete and abstract nouns. Changing from a normal horizontal format to the use of unconventionally "stepped" words, however, produced length effects for words in both visual hemifields (Experiment 3). The Length x VHF interaction was found once again in Experiment 4 where subjects classified words as either concrete or abstract. A model proposing two modes of visual processing of letter strings is presented to account for these findings. Mode A operates independent of string length and is seen only in left hemisphere analysis of familiar words. Mode B is length dependent: it is the only mode possessed by the right hemisphere but is displayed by the left hemisphere to nonwords and to words in abnormal formats.  相似文献   

15.
A lexical decision experiment tested visual field stimulation of word targets after priming the central visual field by the target word outline shape and/or an incomplete sentence. In general, RT was shorter and accuracy better for target words presented to the RVF. Responses were quicker and more accurate to target words presented to either visual hemifield after priming by either a congruent incomplete sentence or a congruent word outline shape (WOS). However, the joint effect of WOS and an incomplete sentence as co-primes was different when the succeeding word target appeared in the RVF than when it appeared in the LVF. While a congruent WOS and incomplete sentence acting as co-primes reduced RT to LVF targets orthogonally. the two variables operated interactively as co-primes on target words presented to the RVF.  相似文献   

16.
Clinically depressed (n = 20), previously depressed (n = 28), and nondepressed control (n = 27) individuals, classified according to a structured clinical diagnostic interview, participated in a study employing a modified prior entry (Titchener, 1908) procedure to investigate interrelationships among word (adjective) valence, visual attention, and cerebral hemispheric activity. Overall, positive words were selected more quickly when presented to the right, versus left, visual field (RVF, LVF); the opposite pattern was observed for negative words. While there was no significant group X Valence X Visual Field interaction, planned comparisons revealed that the aforementioned Valence X Visual Field interaction was significant only for the nondepressed control group. Although the remitted group exhibited an overall pattern similar to the control group, the depressed group evinced a pattern in the opposite direction for positive words (i.e., quicker in the LVF than the RVF).  相似文献   

17.
Several studies have shown that laterally presented consonant–vowel–consonant (CVC) strings produce both superior performance, and a more wholistic processing strategy in the right visual field/left hemisphere (RVF/LHEM), and a more sequential strategy in the inferior left visual field (LVF). To determine whether these strategies are applied to other types of trigrams subjects (n= 30) were asked to identify consonant and symbol trigrams briefly projected unilaterally to the LVF or RVF, or bilaterally (the same trigram in both fields—BVF). A second group of subjects (n= 30) first practiced pronouncing consonant trigrams and then viewed them tachistoscopically. Both tasks yield RVF advantages. Symbols are processed more wholistically in the LVF, more sequentially in the RVF and in an intermediate pattern when presented bilaterally. In contrast, subjects seem to chunk letters as bigrams, and do so equally well in all fields, and visual field differences in strategies emerge for consonants only when they are pronounced. Pronounceability of consonant trigrams, assessed with ratings and vocal reaction times, was predicted by orthographic regularity. Since the RHEM has limited phonetic skills, but it, like the LHEM, is privy to information on orthographic regularity, the error pattern on consonant strings indicates non-phonetic processing, whereas the RVF wholistic strategy for consonant–vowel–consonant strings appears to reflect phonetic processing.  相似文献   

18.
夏全胜  彭刚石锋 《心理科学》2014,37(6):1333-1340
将ERP技术和半视野技术相结合,采用词汇判断任务,对汉语名词、动词和动名兼类词在左脑和右脑中的加工机制进行了考察。实验结果显示,名词和动词的N400仅在左视野/右脑存在差异,名词和动词的N400在左视野/右脑和右视野/左脑中都比偏(动)和偏(名)更负。不同词类的LPC在右视野/左脑中没有显著差异;偏(名)和偏(动)的LPC在左视野/右脑中比名词和动词更正。实验结果表明,在没有语境条件下,汉语名词和动词的差异主要在具体性上,动名兼类词体现出不同于名词、动词的加工机制。  相似文献   

19.
It has been reported that tachistoscopic perception of single Chinese characters is better with a left-visual-field (LVF) than with a right-visual-field (RVF) presentation and that of Chinese words consisting of characters is better with a RVF presentation (O. J. L. Tzeng, D. L. Hung, B. Cotton, & S.-Y. Wang, 1979, Nature (London), 382, 499-501). In this study, the nature of this character-word difference in lateralization was explored in a task in which stimuli were presented unilaterally to a visual field for recognition test. Four types of stimuli were used: Single character, single pseudo- or noncharacter, two-character word, and two-character pseudoword. Results show (a) no visual-field advantage for illegal characters and words, (b) a LVF-advantage effect for characters associated with a more prominent LVF than RVF character-superiority effect, (c) a RVF-advantage effect for words associated with a more prominent RVF than LVF word-superiority effect, and (d) these two visual-field effects for characters and words being not absolute, they occur only with a low rather than with a high recognition for their respective illegal counterparts. These results suggest that the character-word difference is due to a more efficient lexical interpretation of character stimuli in the right than in the left hemisphere and a more efficient lexical interpretation of word stimuli in the left than in the right hemisphere.  相似文献   

20.
Event-related potentials (ERPs) were recorded as healthy participants listened to puns such as "During branding, cowboys have sore calves." To assess hemispheric differences in pun comprehension, visually presented probes that were either highly related (COW), moderately related (LEG), or unrelated, were presented in either the left or right visual half field (LVF/RVF). The sensitivity of each hemisphere to the different meanings evoked by the pun was assessed by ERP relatedness effects with presentation to the LVF and the RVF. In Experiment 1, the inter-stimulus interval between the pun and the onset of the visual probe was 0 ms; in Experiment 2, this value was 500 ms. In Experiment 1, both highly and moderately related probes elicited similar priming effects with RVF presentation. Relative to their unrelated counterparts, related probes elicited less negative ERPs in the N400 interval (300-600 ms post-onset), and more positive ERPs 600-900 ms post-onset, suggesting both meanings of the pun were equally active in the left hemisphere. LVF presentation yielded similar priming effects (less negative N400 and a larger positivity thereafter) for the highly related probes, but no effects for moderately related probes. In Experiment 2, similar N400 priming effects were observed for highly and moderately related probes presented to both visual fields. Compared to unrelated probes 600-900 ms post-onset, related probes elicited a centro-parietal positivity with RVF presentation, but a fronto-polar positivity with LVF presentation. Results suggest that initially, the different meanings evoked by a pun are both active in the left hemisphere, but only the most highly related meaning is active in the right hemisphere. By 500 ms, both meanings are active in both hemispheres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号