首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Illusory self-motion (vection) is thought to be determined by motion in the peripheral visual field, whereas stimulation of more central retinal areas results in object-motion perception. Recent data suggest that vection can be produced by stimulation of the central visual field provided it is configured as a more distant surface. In this study vection strength (tracking speed, onset latency, and the percentage of trials where vection was experienced) and the direction of self-motion produced by displays moving in the central visual field were investigated. Apparent depth, introduced by using kinetic occlusion information, influenced vection strength. Central displays perceived to be in the background elicited stronger vection than identical displays appearing in the foreground. Further, increasing the eccentricity of these displays from the central retina diminished vection strength. If the central and peripheral displays were moved in opposite directions, vection strength was unaffected, and the direction of vection was determined by motion of the central display on almost half of the trials when the centre was far. Near centres produced fewer centre-consistent responses. A complete understanding of linear vection requires that factors such as display size, retinal locus, and apparent depth plane are considered.  相似文献   

2.
Approximately linear relationships were observed between contrast, spatial frequency, temporal frequency, or velocity of stimulation and perceived velocity of curvilinear vection—that is, a visually induced self-motion in a curved path. Similarly, linear relationships were also found between the perceived degree of curvature of curvilinear vection and spatial frequency or velocity of stimulation. Since the perceived velocity of curvilinear vection varies with contrast, spatial frequency, temporal frequency, and angular velocity, and the perceived degree of curvature of curvilinear vection varies only with spatial frequency and angular velocity, peripheral vision is not sufficient for computing accurately the curvilinear component of induced self-motion in a curved path. Concurrently, it was shown that the perceived direction of curvilinear vection is not always unambiguously perceived (Sauvan & Bonnet, 1989). Consequently, it is suggested that two different types of visual processing, which involve the peripheral or the central vision, underlie the processing of curvilinear vection.  相似文献   

3.
Spatial orientation from optic flow in the central visual field   总被引:3,自引:0,他引:3  
Previous research has shown that stimulation of the central visual field with radial flow patterns (produced by forward motion) can induce perceived self-motion, but has failed to demonstrate effects on postural stability of either radial flow patterns or lamellar flow patterns (produced by horizontal translation) in the central visual field. The present study examined the effects of lamellar and radial flow on postural stability when stimulation was restricted to the central visual field. Displays simulating observer motion through a volume of randomly positioned points were observed binocularly through a window that limited the field of view to 15 degrees. The velocity of each display varied according to the sum of four sine functions of prime frequencies. Changes in posture were used to measure changes in perceived spatial orientation. A frequency analysis of postural sway indicated that increased sway occurred at the frequencies of motion simulated in the display for both lamellar and radial flow. These results suggest that both radial and lamellar optic flow are effective for determining spatial orientation when stimulation is limited to the central visual field.  相似文献   

4.
The effects of the size of a stimulus and its eccentricity (central or peripheral) on the visually induced perception of horizontal translational self-motion (vection) were investigated. The central and peripheral areas of the observers' visual field were simultaneously stimulated by random dot patterns that moved in opposite directions. The results of two experiments indicated that the effects of central and peripheral presentations of the moving visual pattern are equivalent, and that vection strength is determined by the stimulus size and speed but not by its eccentricity. These results are consistent with the findings of previous studies that suggested that there are no qualitative differences in the vection-inducing potentials of the central and peripheral areas of the visual field, and are counter to the more traditional hypothesis, which has assumed that the perception of self-motion is specifically assigned to peripheral vision.  相似文献   

5.
The static form of the size-distance invariance hypothesis asserts that a given proximal stimulus size (visual angle) determines a unique and constant ratio of perceived object size to perceived object distance. A proposed kinetic invariance hypothesis asserts that a changing proximal stimulus size (an expanding or contracting solid visual angle) produces a constant perceived size and a changing perceived distance such that the instantaneous ratio of perceived size to perceived distance is determined by the instantaneous value of visual angle. The kinetic invariance hypothesis requires a new concept, an operating constraint, to mediate between the proximal expansion or contraction pattern and the perception of rigid object motion in depth. As a consequence of the operating constraint, expansion and contraction patterns are automatically represented in consciousness as rigid objects. In certain static situations, the operation of this constraint produces the anomalous perceived-size-perceived-distance relations called the size-distance paradox.  相似文献   

6.
The static form of the size-distance invariance hypothesis asserts that a given proximal stimulus size (visual angle) determines a unique and constant ratio of perceived-object size to perceived object distance. A proposed kinetic invariance hypothesis asserts that a changing proximal stimulus size (an expanding or contracting solid visual angle) produces a constant perceived size and a changing perceived distance such that the instantaneous ratio of perceived size to perceived distance is determined by the instantaneous value of visual angle. The kinetic invariance hypothesis requires a new concept, an operating constraint, to mediate between the proximal expansion or contraction pattern and the perception of rigid object motion in depth. As a consequence of the operating constraint, expansion and contraction patterns are automatically represented in consciousness as rigid objects. In certain static situations, the operation of this constraint produces the anomalous perceived-size-perceived-distance relations called the size-distance paradox.  相似文献   

7.
Palmisano S 《Perception》2002,31(4):463-480
Previous research found that adding stereoscopic information to radially expanding optic flow decreased vection onsets and increased vection durations (Palmisano, 1996 Perception & Psychophysics 58 1168-1176). In the current experiments, stereoscopic cues were also found to increase perceptions of vection speed and self-displacement during vection in depth--but only when these cues were consistent with monocularly available information about self-motion. Stereoscopic information did not appear to be improving vection by increasing the perceived maximum extent of displays or by making displays appear more three-dimensional. Rather, it appeared that consistent patterns of stereoscopic optic flow provided extra, purely binocular information about vection speed, which resulted in faster/more compelling illusions of self-motion in depth.  相似文献   

8.
Three experiments were performed to examine the role that central and peripheral vision play in the perception of the direction of translational self-motion, or heading, from optical flow. When the focus of radial outflow was in central vision, heading accuracy was slightly higher with central circular displays (10 degrees-25 degrees diameter) than with peripheral annular displays (40 degrees diameter), indicating that central vision is somewhat more sensitive to this information. Performance dropped rapidly as the eccentricity of the focus of outflow increased, indicating that the periphery does not accurately extract radial flow patterns. Together with recent research on vection and postural adjustments, these results contradict the peripheral dominance hypothesis that peripheral vision is specialized for perception of self-motion. We propose a functional sensitivity hypothesis--that self-motion is perceived on the basis of optical information rather than the retinal locus of stimulation, but that central and peripheral vision are differentially sensitive to the information characteristic of each retinal region.  相似文献   

9.
Experiments are reported in which it was found that, with the angular speed of a visual surround held constant, the perceived speed of rotary self-motion increased linearly with increasing perceived distance of this surround. This finding was in agreement with a motion constancy equation derived from a consideration of object-referred motion perception. Since information concerning distance is necessary for the perception of linear but not angular speed, this finding supports the conclusion that visually perceived rotary self-motion perception is dependent upon perceived linear surround motion at least in the horizontal plane. The visual motion constancy mechanism which operates for object-referred motion can apparently not be switched off for the special case of self-motion perception.  相似文献   

10.
Accelerating self-motion displays produce more compelling vection in depth   总被引:1,自引:0,他引:1  
We examined the vection in depth induced when simulated random self-accelerations (jitter) and periodic self-accelerations (oscillation) were added to radial expanding optic flow (simulating constant-velocity forward self-motion). Contrary to the predictions of sensory-conflict theory frontal-plane jitter and oscillation were both found to significantly decrease the onsets and increase the speeds of vection in depth. Depth jitter and oscillation had lesser, but still significant, effects on the speed of vection in depth. A control experiment demonstrated that adding global perspective motion which simulated a constant-velocity frontal-plane self-motion had no significant effect on vection in depth induced by the radial component of the optic flow. These results are incompatible with the notion that constant-velocity displays produce optimal vection. Rather, they indicate that displays simulating self-acceleration can often produce more compelling experiences of self-motion in depth.  相似文献   

11.
Functions reliably describing perception of motion in depth have been established experimentally by using psychophysical methods of size and distance estimations and threshold measurements. The stimuli were generated with a new hybrid technique yielding an image refresh rate of 1667 Hz. In this way it was possible to generate rapid expansions and contractions of the moving checkerboard pattern constituting the stimulus for depth motion perception. The results showed that perceived size constancy as well as depth impression varied with oscillation frequency. Under the conditions of slow motions (oscillation frequencies around 2 Hz), perfect size constancy was obtained. Above that limit, size constancy systematically decreased, and with oscillation frequencies of about 5 Hz the perceived size constancy was close to zero when small-sized patterns were used. Under the conditions of wide field stimulation (when the pattern subtended 66 degrees of visual angle), the cut-off limit increased to 16 Hz. Since the perception of depth motion amplitudes as well as perceived velocities of the visual object are related to perceived size constancy, the findings have certain implications for theoretical explanations of depth motion perception. Received: 15 December 1997 / Accepted: 21 December 1998  相似文献   

12.
Thresholds for the perception of linear vection were measured. These thresholds allowed us to define the spatiotemporal contrast surface sensitivity and the spatiotemporal domain of the perception of rectilinear vection (a visually induced self-motion in a straight line). Moreover, a Weber’s law was found, such that a mean relative differential threshold in angular velocity of about 41% is necessary to perceive curvilinear vection. This visually induced self-motion corresponds to the sensation of moving in a curved path. It is proposed that curvilinear vection is induced when the apparent velocity difference is detectable. The spatiotemporal domain of perception of rectilinear vection and its spatiotemporal contrast surface sensitivity are centered on low spatial frequencies. Concurrently, the values which correspond to the relative differential thresholds of curvilinear vection are low spatial frequencies. Accordingly, the peripheral ambient visual system seems to be involved in perceiving linear vection. It is argued further that the central ambient system might also be involved in the processing of linear vection.  相似文献   

13.
S Palmisano  B Gillam 《Perception》1998,27(9):1067-1077
While early research suggested that peripheral vision dominates the perception of self-motion, subsequent studies found little or no effect of stimulus eccentricity. In contradiction to these broad notions of 'peripheral dominance' and 'eccentricity independence', the present experiments showed that the spatial frequency of optic flow interacts with its eccentricity to determine circular vection magnitude--central stimulation producing the most compelling vection for high-spatial-frequency stimuli and peripheral stimulation producing the most compelling vection for lower-spatial-frequency stimuli. This interaction appeared to be due, in part at least, to the effect that the higher-spatial-frequency moving pattern had on subjects' ability to organise optic flow into related motion about a single axis. For example, far-peripheral exposure to this high-spatial-frequency pattern caused many subjects to organise the optic flow into independent local regions of motion (a situation which clearly favoured the perception of object motion not self-motion). It is concluded that both high-spatial-frequency and low-spatial-frequency mechanisms are involved in the visual perception of self-motion--with their activities depending on the nature and eccentricity of the motion stimulation.  相似文献   

14.
The aim of this study was to investigate the perception of possibilities for action (i.e., affordances) that depend on one's movement capabilities, and more specifically, the passability of a shrinking gap between converging obstacles. We introduce a new optical invariant that specifies in intrinsic units the minimum locomotor speed needed to safely pass through a shrinking gap. Detecting this information during self-motion requires recovering the component of the obstacles' local optical expansion attributable to obstacle motion, independent of self-motion. In principle, recovering the obstacle motion component could involve either visual or non-visual self-motion information. We investigated the visual and non-visual contributions in two experiments in which subjects walked through a virtual environment and made judgments about whether it was possible to pass through a shrinking gap. On a small percentage of trials, visual and non-visual self-motion information were independently manipulated by varying the speed with which subjects moved through the virtual environment. Comparisons of judgments on such catch trials with judgments on normal trials revealed both visual and non-visual contributions to the detection of information about minimum walking speed.  相似文献   

15.
Seno T  Yamada Y  Ihaya K 《Perception》2011,40(11):1390-1392
We examined the relationship between personality and visually induced self-motion perception (latency, duration, and magnitude). A psychological experiment with radially expanding patterns that induced self-motion perception along the fore and aft axis was conducted, followed by personality assessments. We found that all the measures of self-motion perception we examined correlated negatively with the degree of narcissistic traits.  相似文献   

16.
We investigated the effects of visual and vestibulo-tactile inputs on perceived self-motion. Each of 23 subjects was exposed to an optical pattern rotating around the roll axis (i.e., line of sight) while the chair, in which the subject was placed, was rotated back and forth between +/-70 degrees (i.e., large rolling) or between +/-35 degrees (i.e., small rolling) from the gravitational vertical. Each subject judged perceived velocity of self-motion under each of 16 combinations of pattern velocity and chair velocity. The main results were the following: (1) The mean estimation increased with pattern velocity, and it also increased with chair velocity, (2) to attain a constant perceived velocity of self-motion, pattern velocity was traded for chair velocity, and for the large rolling of the chair, visual inputs were more effective than vestibulo-tactile inputs, whereas for the small rolling, the inverse was true; (3) analyses of multiple regression, when applied to the mean estimations, showed that for both rollings of the chair, the visual component dominated over the vestibulo-tactile component, but for the small rolling of the chair, the difference in effectiveness between the two components was attenuated. We discuss these findings in terms of visual-vestibular interaction.  相似文献   

17.
Typically, multiple cues can be used to generate a particular percept. Our area of interest is the extent to which humans are able to synergistically combine cues that are generated when moving through an environment. For example, movement through the environment leads to both visual (optic-flow) and vestibular stimulation, and studies have shown that non-human primates are able to combine these cues to generate a more accurate perception of heading than can be obtained with either cue in isolation. Here we investigate whether humans show a similar ability to synergistically combine optic-flow and vestibular cues. This was achieved by determining the sensitivity to optic-flow stimuli while physically moving the observer, and hence producing a vestibular signal, that was either consistent with the optic-flow signal, eg a radially expanding pattern coupled with forward motion, or inconsistent with it, eg a radially expanding pattern with backward motion. Results indicate that humans are more sensitive to motion-in-depth optic-flow stimuli when they are combined with complementary vestibular signals than when they are combined with conflicting vestibular signals. These results indicate that in humans, like in nonhuman primates, there is perceptual integration of visual and vestibular signals.  相似文献   

18.
Visual motion is used to control direction and speed of self-motion and time-to-contact with an obstacle. In earlier work, we found that human subjects can discriminate between the distances of different visually simulated self-motions in a virtual scene. Distance indication in terms of an exocentric interval adjustment task, however, revealed linear correlation between perceived and indicated distances but with a profound distance underestimation. One possible explanation for this underestimation is the perception of visual space in virtual environments. Humans perceive visual space in natural scenes as curved, and distances are increasingly underestimated with increasing distance from the observer. Such spatial compression may also exist in our virtual environment. We therefore surveyed perceived visual space in a static virtual scene. We asked observers to compare two horizontal depth intervals, similar to experiments performed in natural space. Subjects had to indicate the size of one depth interval relative to a second interval. Our observers perceived visual space in the virtual environment as compressed, similar to the perception found in natural scenes. However, the nonlinear depth function we found can not explain the observed distance underestimation of visual simulated self-motions in the same environment.  相似文献   

19.
Bubka A  Bonato F  Palmisano S 《Perception》2008,37(5):704-711
When stationary observers view an optic-flow pattern, visually induced self-motion perception (vection) and a form of motion sickness known as simulator sickness (SS), can result. Previous results suggest that an expanding flow pattern leads to more SS than a contracting pattern. Sensory conflict, a possible cause of SS, may be more salient when an expanding optic-flow pattern is viewed. An experiment was conducted to test if a more salient sensory conflict accompanying expanding flow patterns might inhibit vection. Participants (n = 15) viewed a pattern of blue squares, either steadily expanded or contracted, on a large rear-projection screen. Vection onset and magnitude were measured for 30 s with a computer-interfaced slide device. Vection onset was significantly faster, and vection magnitude stronger, when a contracting pattern was viewed. We propose that our extensive experience with forward self-motion may form a neural expectancy (exposure-history) about the sensory inputs which typically accompany expanding flow. However, since backward self-motion is less common, there may be a weaker exposure-history for contracting flow, and as a result these patterns generate less salient sensory conflict and subsequently less vection.  相似文献   

20.
Three experiments were performed to examine the role that central and peripheral vision play in the perception of the direction of translational self-motion, or heading, from optical flow. When the focus of radial outflow was in central vision, heading accuracy was slightly higher with central circular displays (10°–25° diameter) than with peripheral annular displays (40° diameter), indicating that central vision is somewhat more sensitive to this information. Performance dropped rapidly as the eccentricity of the focus of outflow increased, indicating that the periphery does not accurately extract radial flow patterns. Together with recent research on vection and postural adjustments, these results contradict theperipheral dominance hypothesis that peripheral vision is specialized for perception of self-motion. We propose afunctional sensitivity hypothesis—that. self-motion is perceived on the basis of optical information rather than the retinal locus of stimulation, but that central and peripheral vision are differentially sensitive to the information characteristic of each retinal region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号