首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The increasing use of ordinal variables in different fields has led to the introduction of new statistical methods for their analysis. The performance of these methods needs to be investigated under a number of experimental conditions. Procedures to simulate from ordinal variables are then required. In this article, we deal with simulation from multivariate ordinal random variables. We propose a new procedure for generating samples from ordinal random variables with a prespecified correlation matrix and marginal distributions. Its features are examined and compared with those of its main competitors. A software implementation in R is also provided along with examples of its application.  相似文献   

2.
Takane, Young, and de Leeuw proposed a procedure called FACTALS for the analysis of variables of mixed measurement levels (numerical, ordinal, or nominal). Mooijaart pointed out that their algorithm does not necessarily converge, and Nevels proposed a new algorithm for the case of nominal variables. In the present paper it is shown that Nevels' procedure is incorrect, and a new procedure for handling nominal variables is proposed. In addition, a procedure for handling ordinal variables is proposed. Using these results, a monotonically convergent algorithm is constructed for FACTALS of any mixture of variables.The authors are obliged to Jos ten Berge for stimulating comments on an earlier version of this paper. The research of H. A. L. Kiers has been made possible by a fellowship of the Royal Netherlands Academy of Arts and Sciences. The research of Y. Takane has been supported by the Natural Sciences and Engineering Research Council of Canada, grant number A6394, and by the McGill-IBM Cooperative Grant.  相似文献   

3.
The polychoric instrumental variable (PIV) approach is a recently proposed method to fit a confirmatory factor analysis model with ordinal data. In this paper, we first examine the small-sample properties of the specification tests for testing the validity of instrumental variables (IVs). Second, we investigate the effects of using different numbers of IVs. Our results show that specification tests derived for continuous data are extremely oversized at all sample sizes when applied to ordinal variables. Possible modifications for ordinal data are proposed in the present study. Simulation results show that the modified specification tests with all available IVs are able to detect model misspecification. In terms of estimation accuracy, the PIV approach where the IVs outnumber the endogenous variables by one produces a lower bias but a higher variation than the PIV approach with more IVs for correctly specified factor loadings at small samples.  相似文献   

4.
In summarizing ordinal data with many tied rankings, generally pre- sented in the form of a cross-tabulation, there are many considerations that enter into the selection of a statistic summarizing the degree of association. When more than two variables are analyzed simultaneously the situation is even more complex. This paper considers, for the joint distribution of three ordinal variables, the interpretation of a set of summary statistics having product-moment characteristics. This interpretation sheds some light on general problems of analysis of causal relations and relates these summary statistics to other procedures for analyzing attribute data. They are illustrated by re-analyzing some data used by Siege1 to illustrate a similar procedure.  相似文献   

5.
徐芃  祁禄  熊健  叶浩生 《心理学报》2015,47(12):1520-1528
定序变量在心理现象和心理数据中随处可见, 采用综合的定序变量回归分析模型可以对“镜像模式”和“漏斗模型”的心理现象做出合理的解释和预测。首先通过非参数检验对影响因素进行初步降维, 其次用Probit定序回归对降维后的影响因素贡献率进行判别, 从而进一步筛选具有显著性判断水平的有效指标, 最后用Logistic回归模型对某种特定的心理现象发生与否进行信息量足够大的解释和预测。大学毕业生工作生活质量满意度的预测对这种综合定序变量回归分析模型的实例拟合, 证实了综合定序变量回归分析模型在心理现象和心理数据分析中的应用价值。  相似文献   

6.
Exploratory factor analysis (EFA) is often conducted with ordinal data (e.g., items with 5-point responses) in the social and behavioral sciences. These ordinal variables are often treated as if they were continuous in practice. An alternative strategy is to assume that a normally distributed continuous variable underlies each ordinal variable. The EFA model is specified for these underlying continuous variables rather than the observed ordinal variables. Although these underlying continuous variables are not observed directly, their correlations can be estimated from the ordinal variables. These correlations are referred to as polychoric correlations. This article is concerned with ordinary least squares (OLS) estimation of parameters in EFA with polychoric correlations. Standard errors and confidence intervals for rotated factor loadings and factor correlations are presented. OLS estimates and the associated standard error estimates and confidence intervals are illustrated using personality trait ratings from 228 college students. Statistical properties of the proposed procedure are explored using a Monte Carlo study. The empirical illustration and the Monte Carlo study showed that (a) OLS estimation of EFA is feasible with large models, (b) point estimates of rotated factor loadings are unbiased, (c) point estimates of factor correlations are slightly negatively biased with small samples, and (d) standard error estimates and confidence intervals perform satisfactorily at moderately large samples.  相似文献   

7.
In many psychological studies, in particular those conducted by experience sampling, mental states are measured repeatedly for each participant. Such a design allows for regression models that separate between- from within-person, or trait-like from state-like, components of association between two variables. But these models are typically designed for continuous variables, whereas mental state variables are most often measured on an ordinal scale. In this paper we develop a model for disaggregating between- from within-person effects of one ordinal variable on another. As in standard ordinal regression, our model posits a continuous latent response whose value determines the observed response. We allow the latent response to depend nonlinearly on the trait and state variables, but impose a novel penalty that shrinks the fit towards a linear model on the latent scale. A simulation study shows that this penalization approach is effective at finding a middle ground between an overly restrictive linear model and an overfitted nonlinear model. The proposed method is illustrated with an application to data from the experience sampling study of Baumeister et al. (2020, Personality and Social Psychology Bulletin, 46, 1631).  相似文献   

8.
Theory and methodology for exploratory factor analysis have been well developed for continuous variables. In practice, observed or measured variables are often ordinal. However, ordinality is most often ignored and numbers such as 1, 2, 3, 4, representing ordered categories, are treated as numbers having metric properties, a procedure which is incorrect in several ways. In this article we describe four approaches to factor analysis of ordinal variables which take proper account of ordinality and compare three of them with respect to parameter estimates and fit. The comparison is made both in terms of their relative methodological advantages and in terms of an empirical data example and two generated data examples. In particular, we discuss the issue of how to test the model and to measure model fit.  相似文献   

9.
Cognitive diagnostic models provide a framework for classifying individuals into latent proficiency classes, also known as attribute profiles. Recent research has examined the implementation of a Pólya-gamma data augmentation strategy binary response model using logistic item response functions within a Bayesian Gibbs sampling procedure. In this paper, we propose a sequential exploratory diagnostic model for ordinal response data using a logit-link parameterization at the category level and extend the Pólya-gamma data augmentation strategy to ordinal response processes. A Gibbs sampling procedure is presented for efficient Markov chain Monte Carlo (MCMC) estimation methods. We provide results from a Monte Carlo study for model performance and present an application of the model.  相似文献   

10.
A structural multilevel model is presented where some of the variables cannot be observed directly but are measured using tests or questionnaires. Observed dichotomous or ordinal polytomous response data serve to measure the latent variables using an item response theory model. The latent variables can be defined at any level of the multilevel model. A Bayesian procedure Markov chain Monte Carlo (MCMC), to estimate all parameters simultaneously is presented. It is shown that certain model checks and model comparisons can be done using the MCMC output. The techniques are illustrated using a simulation study and an application involving students' achievements on a mathematics test and test results regarding management characteristics of teachers and principles.  相似文献   

11.
This paper proposes an ordinal generalization of the hierarchical classes model originally proposed by De Boeck and Rosenberg (1998). Any hierarchical classes model implies a decomposition of a two-way two-mode binary arrayM into two component matrices, called bundle matrices, which represent the association relation and the set-theoretical relations among the elements of both modes inM. Whereas the original model restricts the bundle matrices to be binary, the ordinal hierarchical classes model assumes that the bundles are ordinal variables with a prespecified number of values. This generalization results in a classification model with classes ordered along ordinal dimensions. The ordinal hierarchical classes model is shown to subsume Coombs and Kao's (1955) model for nonmetric factor analysis. An algorithm is described to fit the model to a given data set and is subsequently evaluated in an extensive simulation study. An application of the model to student housing data is discussed.  相似文献   

12.
Dominance‐based ordinal multiple regression (DOR) is designed to answer ordinal questions about relationships among ordinal variables. Only one parameter per predictor is estimated, and the number of parameters is constant for any number of outcome levels. The majority of existing simulation evaluations of DOR use predictors that are continuous or ordinal with many categories, so the performance of the method is not well understood for ordinal variables with few categories. This research evaluates DOR in simulations using three‐category ordinal variables for the outcome and predictors, with a comparison to the cumulative logits proportional odds model (POC). Although ordinary least squares (OLS) regression is inapplicable for theoretical reasons, it was also included in the simulations because of its popularity in the social sciences. Most simulation outcomes indicated that DOR performs well for variables with few categories, and is preferable to the POC for smaller samples and when the proportional odds assumption is violated. Nevertheless, confidence interval coverage for DOR was not flawless and possibilities for improvement are suggested.  相似文献   

13.
14.
15.
Different latent variable models have been used to analyze ordinal categorical data which can be conceptualized as manifestations of an unobserved continuous variable. In this paper, we propose a unified framework based on a general latent variable model for the comparison of treatments with ordinal responses. The latent variable model is built upon the location-scale family and is rich enough to include many important existing models for analyzing ordinal categorical variables, including the proportional odds model, the ordered probit-type model, and the proportional hazards model. A flexible estimation procedure is proposed for the identification and estimation of the general latent variable model, which allows for the location and scale parameters to be freely estimated. The framework advances the existing methods by enabling many other popular models for analyzing continuous variables to be used to analyze ordinal categorical data, thus allowing for important statistical inferences such as location and/or dispersion comparisons among treatments to be conveniently drawn. Analysis on real data sets is used to illustrate the proposed methods.  相似文献   

16.
17.
Ordinal data occur frequently in the social sciences. When applying principal component analysis (PCA), however, those data are often treated as numeric, implying linear relationships between the variables at hand; alternatively, non-linear PCA is applied where the obtained quantifications are sometimes hard to interpret. Non-linear PCA for categorical data, also called optimal scoring/scaling, constructs new variables by assigning numerical values to categories such that the proportion of variance in those new variables that is explained by a predefined number of principal components (PCs) is maximized. We propose a penalized version of non-linear PCA for ordinal variables that is a smoothed intermediate between standard PCA on category labels and non-linear PCA as used so far. The new approach is by no means limited to monotonic effects and offers both better interpretability of the non-linear transformation of the category labels and better performance on validation data than unpenalized non-linear PCA and/or standard linear PCA. In particular, an application of penalized optimal scaling to ordinal data as given with the International Classification of Functioning, Disability and Health (ICF) is provided.  相似文献   

18.
Canonical analysis of two convex polyhedral cones and applications   总被引:1,自引:0,他引:1  
Canonical analysis of two convex polyhedral cones consists in looking for two vectors (one in each cone) whose square cosine is a maximum. This paper presents new results about the properties of the optimal solution to this problem, and also discusses in detail the convergence of an alternating least squares algorithm. The set of scalings of an ordinal variable is a convex polyhedral cone, which thus plays an important role in optimal scaling methods for the analysis of ordinal data. Monotone analysis of variance, and correspondence analysis subject to an ordinal constraint on one of the factors are both canonical analyses of a convex polyhedral cone and a subspace. Optimal multiple regression of a dependent ordinal variable on a set of independent ordinal variables is a canonical analysis of two convex polyhedral cones as long as the signs of the regression coefficients are given. We discuss these three situations and illustrate them by examples.  相似文献   

19.
Previous research has compared methods of estimation for fitting multilevel models to binary data, but there are reasons to believe that the results will not always generalize to the ordinal case. This article thus evaluates (a) whether and when fitting multilevel linear models to ordinal outcome data is justified and (b) which estimator to employ when instead fitting multilevel cumulative logit models to ordinal data, maximum likelihood (ML), or penalized quasi-likelihood (PQL). ML and PQL are compared across variations in sample size, magnitude of variance components, number of outcome categories, and distribution shape. Fitting a multilevel linear model to ordinal outcomes is shown to be inferior in virtually all circumstances. PQL performance improves markedly with the number of ordinal categories, regardless of distribution shape. In contrast to binary data, PQL often performs as well as ML when used with ordinal data. Further, the performance of PQL is typically superior to ML when the data include a small to moderate number of clusters (i.e., ≤ 50 clusters).  相似文献   

20.
Generalized full-information item bifactor analysis   总被引:1,自引:0,他引:1  
Cai L  Yang JS  Hansen M 《心理学方法》2011,16(3):221-248
Full-information item bifactor analysis is an important statistical method in psychological and educational measurement. Current methods are limited to single-group analysis and inflexible in the types of item response models supported. We propose a flexible multiple-group item bifactor analysis framework that supports a variety of multidimensional item response theory models for an arbitrary mixing of dichotomous, ordinal, and nominal items. The extended item bifactor model also enables the estimation of latent variable means and variances when data from more than 1 group are present. Generalized user-defined parameter restrictions are permitted within or across groups. We derive an efficient full-information maximum marginal likelihood estimator. Our estimation method achieves substantial computational savings by extending Gibbons and Hedeker's (1992) bifactor dimension reduction method so that the optimization of the marginal log-likelihood requires only 2-dimensional integration regardless of the dimensionality of the latent variables. We use simulation studies to demonstrate the flexibility and accuracy of the proposed methods. We apply the model to study cross-country differences, including differential item functioning, using data from a large international education survey on mathematics literacy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号