首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A fundamental principle that has emerged from studies of natural gaze behavior is that goal-directed arm movements are typically guided by a saccade to the target. In this study, we evaluated a hypothesis that this principle does not apply to rapid reach-to-grasp movements evoked by sudden unexpected balance perturbations. These perturbations involved forward translation of a large (2 × 6 m) motion platform configured to simulate a “real-life” environment. Subjects performed a common “daily-life” visuo-cognitive task (find a telephone and make a call) that required walking to the end of the platform, which was triggered to move as they approached a handrail mounted alongside the travel path. A deception was used to ensure that the perturbation was truly unexpected. Eleven of 18 healthy young-adult subjects (age 22-30) reached to grasp or touch the rail in response to the balance perturbation. In support of the hypothesis, none of these arm reactions was guided by concurrent visual fixation of the handrail. Seven of the 11 looked at the rail upon first entering the environment, and hence may have used “stored” central-field information about the handrail location to guide the subsequent arm reaction. However, the other four subjects never looked directly at the rail, indicating a complete reliance on peripheral vision. These findings add to previous evidence of distinctions in the CNS control of volitional and perturbation-evoked arm movements. Future studies will determine whether similar visuo-motor behavior occurs when the available handhold is smaller or when subjects are not engaged in a concurrent visuo-cognitive task.  相似文献   

2.
The purpose of this study was to identify the detailed mechanism how the maximum throwing arm endpoint velocity is determined by the muscular torques and non-muscular interactive torques from the perspective of the dynamic coupling among the trunk, thorax and throwing and non-throwing arm segments. The pitching movements of ten male collegiate baseball pitchers were measured by a three-dimensional motion capture system. Using the induced-segmental velocity analysis (IVA) developed in this study, the maximum fingertip velocity of the throwing arm (MFV) was decomposed into each contribution of the muscular torques, passive motion-dependent torques due to gyroscopic moment, Coriolis force and centrifugal force, and other interactive torque components. The results showed that MFV (31.6 ± 1.7 m/s) was mainly attributed to two different mechanisms. The first is the passive motion-dependent effect on increasing the angular velocities of three joints (thorax rotation, elbow extension and wrist flexion). The second is the muscular torque effect of the shoulder internal rotation (IR) torque on generating IR angular velocity. In particular, the centrifugal force-induced elbow extension motion, which was the greatest contributor among individual joint contributions, was caused primarily by the angular velocity-dependent forces associated with the humerus, thorax, and trunk rotations. Our study also found that a compensatory mechanism was achieved by the negative and positive contributions of the muscular torque components. The current IVA is helpful to understand how the rapid throwing arm movement is determined by the dynamic coupling mechanism.  相似文献   

3.
Aimed flexion movements of the arm of different amplitude and duration were studied. Velocity and acceleration traces of movements with equal duration but different amplitude were equal, apart from a scaling factor (ratio between movement amplitudes). After appropriate scaling, EMG activity of the first agonist burst for these movements superimposed. This was not true for EMG activity in the antagonist muscle.

For movements with equal amplitude, but different duration, the time to peak acceleration was constant for all MT’s. Except for this fact, traces of acceleration, velocity, and agonist activity following the time of peak acceleration were about equal after appropriate scaling in time and amplitude. The integral of EMG activity in the first agonist burst increased linearly with peak velocity. For the antagonist burst, the integrated EMG activity increased more than proportionally.

During movements made as fast as possible, subjects used a different strategy by varying the duration of the accelerating phase for movements of different amplitude. Movement amplitude was achieved by adjusting the duration of the agonist burst and the onset time for the antagonist muscle. Amplitude of the antagonist burst was constant within a narrow range for movements of different amplitude.

These results did not change when the inertial mass was doubled by loading the arm with an additional mass.  相似文献   

4.
The purpose of this study was to investigate whether the dual task paradigm would influence arm movements during walking. Furthermore, we examined the effects of different walking surfaces on arm movements while performing dual tasks. The effects of age and gender were also investigated. Fifteen young adults and 15 older adults were included in this study. Subjects were asked to perform the walking task alone (single-task trial) and walking in combination with a cognitive task (dual-task trial). Four walking conditions (1 single task and 3 dual task trials)×two walking surfaces were encountered. Both age groups had greater elbow and trunk movement in the sagittal plane under the dual task trials as compared to the single task trial (p<.05). Subjects had greater upper extremity and upper body movement on the soft floor than on the hard floor (p<.05). Subjects had greater movement amplitude when confronting a challenging environment, especially in the contralateral side. Among gender, there was a group-gender interaction: the older females had smaller upper extremity movement than the older males (p<.05) but the opposite was true for the young adults. The results suggest that different age groups of males and females use different balance control strategy to deal with the challenging conditions.  相似文献   

5.
Aimed flexion movements of the arm of different amplitude and duration were studied. Velocity and acceleration traces of movements with equal duration but different amplitude were equal, apart from a scaling factor (ratio between movement amplitudes). After appropriate scaling, EMG activity of the first agonist burst for these movements superimposed. This was not true for EMG activity in the antagonist muscle. For movements with equal amplitude, but different duration, the time to peak acceleration was constant for all MT'. Except for this fact, traces of acceleration, velocity, and agonist activity following the time of peak acceleration were about equal after appropriate scaling in time and amplitude. The integral of EMG activity in the first agonist burst increased linearly with peak velocity. For the antagonist burst, the integrated EMG activity increased more than proportionally. During movements made as fast as possible, subjects used a different strategy by varying the duration of the accelerating phase for movements of different amplitude. Movement amplitude was achieved by adjusting the duration of the agonist burst and the onset time for the antagonist muscle. Amplitude of the antagonist burst was constant within a narrow range for movements of different amplitude. These results did not change when the inertial mass was doubled by loading the arm with an additional mass.  相似文献   

6.
To understand the activation patterns of the trunk musculature, it is also important to consider the implications of adjacent structures such as the upper limbs, and the muscles that act to move the arms. This study investigated the effects of arm positions on the activation patterns and co-activation of the trunk musculature and muscles that move the arm during trunk range-of-motion movements (maximum trunk axial twist, flexion, and lateral bend). Fifteen males and fifteen females, asymptomatic for low back pain, performed maximum trunk range-of-motion movements, with three arm positions for axial twist (loose, crossed, abducted) and two positions for flexion and lateral bend (loose, crossed). Electromyographical data were collected for eight muscles bilaterally, and activation signals were cross-correlated between trunk muscles and the muscles that move the arms (upper trapezius, latissimus dorsi). Results revealed consistently greater muscle co-activation (higher cross-correlation coefficients) between the trunk muscles and upper trapezius for the abducted arm position during maximum trunk axial twist, while results for the latissimus dorsi-trunk pairings were more dependent on the specific trunk muscles (either abdominal or back) and latissimus dorsi muscle (either right or left side), as well as the range-of-motion movement. The findings of this study contribute to the understanding of interactions between the upper limbs and trunk, and highlight the influence of arm positions on the trunk musculature. In addition, the comparison of the present results to those of individuals with back or shoulder conditions may ultimately aid in elucidating underlying mechanisms or contributing factors to those conditions.  相似文献   

7.
Three experiments were performed to evaluate the influence of active and passive limb movements on adaptation to visual displacement. Over a wide frequency range (0·5-1·25 Hz) with constant amplitude, 30°, significant adaptation was achieved with active and passive movements. When arm movement frequency was constant at 1·0 Hz but amplitude of movement was varied, less adaptation was achieved for both active and passive movements than when amplitude was held constant. Even at a frequency above that of most naturally occurring limb movements, 1·67 Hz, and with variable amplitude motion, significant adaptation was achieved with active and passive limb movements. These findings emphasize the importance of visual-proprioceptive discordances for adaptation to visual displacement when only sight of the hand is permitted. Significant differences did not appear between the active and passive movement conditions in any of the experiments.  相似文献   

8.
The timing of natural prehension movements   总被引:39,自引:0,他引:39  
Prehension movements were studied by film in 7 adult subjects. Transportation of the hand to the target-object location had features very similar to any aiming arm movement, that is, it involved a fast-velocity initial phase and a low-velocity final phase. The peak velocity of the movement was highly correlated with its amplitude, although total movement duration tended to remain invariant when target distance was changed. The low-velocity phase consistently began after about 75% of movement time had elapsed. This ration was maintained for different movement amplitudes. Formation of the finger grip occurred during hand transportation. Fingers were first stretched and then began to close in anticipation to contact with the object. The onset of the closure phase was highly correlated to the beginning of the low velocity phase of transportation. This pattern for both transportation and finger grip formation was maintained in conditions whether visual feedback from the moving limb was present or not. Implications of these findings for the central programming of multisegmental movements are discussed.  相似文献   

9.
Comparisons were made of voluntary movements of the right and left arms in normal human subjects. A series of movements of different amplitudes, made at the subject’s own speed, was performed with one limb. After a rest period, the same series was repeated with the contralateral limb. The relation between movement peak velocity and movement amplitude was linear and was the same for both arms. With repeated testing over periods up to two months, the slope of the peak velocity—amplitude relation decreased during the first week, thereafter remaining unchanged. In a second series of experiments, six normal subjects continuously wore a 1 lb (0.45 kg) weight strapped to their left (non-dominant) forearm for up to 1 week. This resulted in an increase in the slope of the peak-velocity/amplitude relation in this arm. A parallel change occurred in movements made independently by the right (non-loaded) arm. A similar matching of movement performance of the two limbs was seen following removal of the weight. The data is interpreted as providing support for the hypothesis that there is a single movement “command” which is applied to both limbs. The interaction of this command with the limbs which have similar second-order mechanical properties yields similar movements even when they are made independently.  相似文献   

10.
The trunk muscle transversus abdominis (TrA) is thought to be controlled independently of the global trunk muscles. Methodological issues in the 1990s research such as unilateral electromyography and a limited range of arm movements justify a re-examination of this theory. The hypothesis tested is that TrA bilateral co-contraction is a typical muscle synergy during arm movement. The activity of 6 pairs of trunk and lower limb muscles was recorded using bilateral electromyography during anticipatory postural adjustments (APAs) associated with the arm movements. The integrated APA electromyographical signals were analyzed for muscle synergy using Principle Component Analysis. TrA does not typically bilaterally co-contract during arm movements (1 out of 6 participants did). APA muscle activity of all muscles during asymmetrical arm movements typically reflected a direction specific diagonal pattern incorporating a twisting motion to transfer energy from the ground up. This finding is not consistent with the hypothesis that TrA plays a unique role providing bilateral, feedforward, multidirectional stiffening of the spine. This has significant implications to the theories underlying the role of TrA in back pain and in the training of isolated bilateral co-contraction of TrA in the prophylaxis of back pain.  相似文献   

11.
Comparisons were made of voluntary movements of the right and left arms in normal human subjects. A series of movements of different amplitudes, made at the subject' own speed, was performed with one limb. After a rest period, the same series was repeated with the contralateral limb. The relation between movement peak velocity and movement amplitude was linear and was the same for both arms. With repeated testing over periods up to two months, the slope of the peak velocity-amplitude relation decreased during the first week, thereafter remaining unchanged. In a second series of experiments, six normal subjects continuously wore a 1 lb (0.45 kg) weight strapped to their left (non-dominant) forearm for up to 1 week. This resulted in an increase in the slope of the peak-velocity/amplitude relation in this arm. A parallel change occurred in movements made independently by the right (non-loaded) arm. A similar matching of movement performance of the two limbs was seen following removal of the weight. The data is interpreted as proving support for the hypothesis that there is a single movement "command" which is applied to both limbs. The interaction of this command with the limbs which have similar second-order mechanical properties yields similar movements even when they are made independently.  相似文献   

12.
Virtual reality (VR) technology is being used with increasing frequency as a training medium for motor rehabilitation. However, before addressing training effectiveness in virtual environments (VEs), it is necessary to identify if movements made in such environments are kinematically similar to those made in physical environments (PEs) and the effect of provision of haptic feedback on these movement patterns. These questions are important since reach-to-grasp movements may be inaccurate when visual or haptic feedback is altered or absent. Our goal was to compare kinematics of reaching and grasping movements to three objects performed in an immersive three-dimensional (3D) VE with haptic feedback (cyberglove/grasp system) viewed through a head-mounted display to those made in an equivalent physical environment (PE). We also compared movements in PE made with and without wearing the cyberglove/grasp haptic feedback system. Ten healthy subjects (8 women, 62.1 ± 8.8 years) reached and grasped objects requiring 3 different grasp types (can, diameter 65.6 mm, cylindrical grasp; screwdriver, diameter 31.6 mm, power grasp; pen, diameter 7.5 mm, precision grasp) in PE and visually similar virtual objects in VE. Temporal and spatial arm and trunk kinematics were analyzed. Movements were slower and grip apertures were wider when wearing the glove in both the PE and the VE compared to movements made in the PE without the glove. When wearing the glove, subjects used similar reaching trajectories in both environments, preserved the coordination between reaching and grasping and scaled grip aperture to object size for the larger object (cylindrical grasp). However, in VE compared to PE, movements were slower and had longer deceleration times, elbow extension was greater when reaching to the smallest object and apertures were wider for the power and precision grip tasks. Overall, the differences in spatial and temporal kinematics of movements between environments were greater than those due only to wearing the cyberglove/grasp system. Differences in movement kinematics due to the viewing environment were likely due to a lack of prior experience with the virtual environment, an uncertainty of object location and the restricted field-of-view when wearing the head-mounted display. The results can be used to inform the design and disposition of objects within 3D VEs for the study of the control of prehension and for upper limb rehabilitation.  相似文献   

13.
Prehension movements of the right hand were recorded in a right-handed man (AC), with an injury to the left posterior parietal cortex (PPC) and with a section of the left half of the splenium. The kinematic analysis of AC's grasping movements in direct and perturbed conditions was compared to that of five control subjects. A novel effect in prehension was revealed--a hemispace effect--in healthy controls only. Movements to the left hemispace were faster, longer, and with a smaller grasp aperture; perturbation of both object position and distance resulted in the attenuation of the direction effect on movement time and the time to velocity peak, with a reverse pattern in the time to maximum grip aperture. Nevertheless, the correlation between transport velocity amplitude and grasp aperture remained stable in both perturbed and non-perturbed movements, reflecting the coordination between reaching and grasping in control subjects. In contrast, transport and grasp, as well as their coordination in both direct and perturbed conditions, were negatively affected by the PPC and splenium lesion in AC, suggesting that transport and grasp rely on two functionally identifiable subsystems.  相似文献   

14.
Although a great deal of experimental attention has been directed at understanding Fitts' law, only a limited number of experiments have attempted to determine if performance differs across effectors for a given movement difficulty. In three experiments reciprocal wrist and arm movements were compared at IDs of 1.5, 3, 4.5 and 6. When absolute movement requirements and visual display were constant, participants' movement times and response characteristics for the arm and wrist were remarkably similar (Experiment 1). However, when amplitude for wrist movements was reduced to 8° and the gain (4×) for the visual display increased participants' movement time, defined on the basis of kinematic markers (movement onset − movement termination), was increasingly shorter relative to arm movements as movement difficulty was increased (Experiment 2). Experiment 3 where the arm was tested at 32° and 8° with the 8° movements provided the same gain (4×) that was used for the 8° wrist movements in Experiment 2, no advantage was observed for the arm at the shorter amplitude. The results are interpreted in terms of the advantages afforded by the increased gain of the visual display, which permitted the wrist, but not the arm, to more effectively preplan and/or correct ongoing movements to achieve the required accuracy demands. It was also noted that while the wrist was more effective during the actual movement production this was accompanied by an offsetting increase in dwell time which presumably is utilized to dissipate the forces accrued during movement production and plan the subsequent movement segment.  相似文献   

15.
Hemispace asymmetries and laterality effects were examined on an arm positioning reproduction task. Sixteen male subjects were asked to reproduce both abductive and adductive positioning movements with the left or right arm within either the left or the right hemispace. Hemispace was manipulated using a 90 degrees head-rotation paradigm. A left hemispace advantage in positioning accuracy was predicted for both left and right arm movements on the grounds that the perceptual-motor control of positioning movements made in left hemispace is primarily mediated by the right hemisphere which is known to be advantageous for tasks which are spatial in nature (Heilman, Bowers, & Watson, 1984). No arm laterality effects were predicted to occur because the proximal musculature involved in the control of arm movements is innervated from both contralateral and ipsilateral cerebral hemispheres (Brinkman & Kuypers, 1973). Results showed that the predicted left hemispace advantage was evident for the right arm on the positioning variability measure alone, whereas it was absent for all other possible conditions on all error measures. Laterality (arm) effects were absent as predicted. The experiment also demonstrated a greater degradation of reproduction performance under the ′crossed" arm-hemispace conditions than under the ′uncrossed" conditions. A plausible explanation for the uncrossed advantage for the task is that under normal conditions, a single hemisphere is primarily responsible for both controlling the contralateral arm and directing attention to the contralateral hemispace, and consequently potential interhemispheric interference is minimized. A clear response bias effect in movement reproduction was also evident as a function of the direction of concurrent arm movement and head rotation. Arm movements made in the same direction as head rotation were systematically undershot in reproduction to a much greater degree than arm movements made in the opposite direction to head rotation.  相似文献   

16.
The purpose of the study was to investigate with what accuracy the soleus H-reflex modulation and excitability could be measured during human walking on two occasions separated by days. The maximal M-wave (Mmax) was measured at rest in the standing position. During treadmill walking every stimulus elicited an M-wave of 25 ± 10% of Mmax in the soleus muscle and a supra-maximal stimulus elicited a maximal M-wave 60 ms after the first stimulus. Both Mmax during rest and during walking were later used for normalization. When normalized to resting Mmax, the peak reflex amplitude during walking was 5% lower on Day 2 than on Day 1 (p = .32). However, when the peak H-reflex was normalized to Mmax in every sweep, Day 2 showed a significant 15% lower amplitude (p = .037). The same pattern was found for the mean H-reflex. Spearman’s Rho was .92 when normalized to resting Mmax but .88 when normalized to Mmax in every sweep. The Pearson product was used to identify one participant at a time on Day 1 among all seven participants on Day 2. For both normalization procedures 5 of 7 participants were identified by this test. Since 5 of 7 participants were recognized between days, it must be recommended to use 10-15 participants for training or intervention studies as far as the H-reflex pattern of modulation during movement is concerned.  相似文献   

17.
Frequency characteristics of head stabilization were examined during locomotor tasks in healthy young adults(N = 8) who performed normal walking and 3 walking tasks designed to produce perturbations primarily in the horizontal plane. In the 3 walking tasks, the arms moved in phase with leg movement, with abnormally large amplitude, and at twice the frequency of leg movement. Head-in-space angular velocity was examined at the predominant frequencies of trunk motion. Head movements in space occurred at low frequencies (< 4.0 Hz) in all conditions and at higher frequencies (> 4.0 Hz) when the arms moved at twice the frequency of the legs. Head stabilization strategies were determined from head-on-trunk with respect to trunk frequency profiles derived from angular velocity data. During natural walking at low frequencies (< 3.0 Hz), head-on-trunk movement was less than trunk movement. At frequencies 3.0 Hz or greater, equal and opposite compensatory movement ensured head stability. When arm swing was altered, compensatory movement guaranteed head stability at all frequencies. Head stabilization was successful for frequencies up to 10.0 Hz during locomotor tasks. Maintaining head stability at high frequencies during voluntary tasks suggests that participants used feedforward mechanisms to coordinate head and trunk movements. Maintenance of head stability during dynamic tasks allows optimal conditions for vestibulo-ocular reflex function.  相似文献   

18.
Short-term limb immobilization affects motor performance   总被引:3,自引:0,他引:3  
C. Ghez, J. Gordon, and M. R Ghilardi (1995; J. Gordon, M. R Ghilardi, & C. Ghez, 1995; R. L. Sainburg, M. R Ghilardi, H. Poizner, & C. Ghez, 1995) have found that proprio-ceptive deafferentation impairs feedforward and feedback mechanisms that control reaching movements. In the present study, the authors found immobilization-induced changes in limb kinematics, including joint motion, in 32 healthy participants who performed out-and-back movements before and after 0, 6, or 12 hr of immobilization of the left arm. Control participants did not undergo the arm immobilization procedure. Immobilization for 12 hr, but not 6 hr, caused trajectories with increased hand-path areas and altered interjoint coordination. The abnormalities were smaller in amplitude but similar in quality to those reported in deafferented patients (R. L. Sainburg et al.). In addition, movement onset point significantly drifted after immobilization. Thus, short-term limb disuse can affect interjoint coordination by acting on feedforward mechanisms. These behavioral alterations are potentially related to cortical plastic changes.  相似文献   

19.
The effects of visual field, responding limb and extrapersonal space on the ability to localize visual targets using slow positioning movements of the arm were examined. Special contact lenses were used to lateralize visual information and to make comparisons with localization under monocular control conditions. Subjects made slow positioning movements to place a cursor directly beneath target lights. They saw target lights but not the moving limb during the trial. For directional error, results indicated that subjects were more accurate localizing targets lateralized to the right hemisphere than targets lateralized to the left hemisphere, indicating right hemisphere superiority for localization of visual targets in grasping space. Localization performance was significantly better with the right hand than the left hand. the left hand demonstrated a directional bias to the right of the targets. Responding hand and visual field did not interact. Finally, contrary to subjects' awareness and verbal reports, target localization was not less accurate in lens than in monocular control conditions. This was true for both amplitude and directional error. This is consistent with other studies where visual information about limb position is not available.  相似文献   

20.
Frequency characteristics of head stabilization were examined during locomotor tasks in healthy young adults (N = 8) who performed normal walking and 3 walking tasks designed to produce perturbations primarily in the horizontal plane. In the 3 walking tasks, the arms moved in phase with leg movement, with abnormally large amplitude, and at twice the frequency of leg movement. Head-in-space angular velocity was examined at the predominant frequencies of trunk motion. Head movements in space occurred at low frequencies (< 4.0 Hz) in all conditions and at higher frequencies (> 4.0 Hz) when the arms moved at twice the frequency of the legs. Head stabilization strategies were determined from head-on-trunk with respect to trunk frequency profiles derived from angular velocity data. During natural walking at low frequencies (< 3.0 Hz), head-on-trunk movement was less than trunk movement. At frequencies 3.0 Hz or greater, equal and opposite compensatory movement ensured head stability. When arm swing was altered, compensatory movement guaranteed head stability at all frequencies. Head stabilization was successful for frequencies up to 10.0 Hz during locomotor tasks Maintaining head stability at high frequencies during voluntary tasks suggests that participants used feedforward mechanisms to coordinate head and trunk movements. Maintenance of head stability during dynamic tasks allows optimal conditions for vestibulo-ocular reflex function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号