共查询到20条相似文献,搜索用时 0 毫秒
1.
Rabbits with the electrolytic lesions of bilateral entorhinal cortex (EC) were trained with the hippocampal-dependent trace conditioning of the nictitating membrane response. The multiple-unit activity of the hippocampal CA1 region was recorded during conditioning. The conditioned stimulus was a tone (1 kHz, 85 dB, 200-ms duration), the unconditioned stimulus was a corneal air puff (3 psi, 150-ms duration), and the interstimulus interval was 750 ms. The EC-lesioned animals showed only 30% conditioned response (CR) by the ninth session while the sham-operated animals showed above 80% CR. The lesioned animals did not show learning-related changes in the hippocampal activity. When the training was switched to the 300-ms interstimulus interval trace conditioning, both groups learned above 80% CR. The EC-lesioned animals, however, showed less learning-related activity in the hippocampus than the sham-operated animals. These results suggest that the development of the learning-related activity in the hippocampus depends on the intact EC, and that the EC may provide a possible pathway conveying learning information from the cerebellum or cerebral cortex to the hippocampus during the trace conditioning. 相似文献
2.
We tested the effects of temporary inactivation of the dorsal entorhinal cortex on spatial discrimination using a conditioned cue preference (CCP) paradigm. The three phases of the procedure were: pre-exposure: unreinforced exploration of the center platform and two adjacent arms of an eight-arm radial maze; training: rats were confined to the ends of the two arms on alternate days – one arm always contained food and the other never contained food; testing: unreinforced exploration of the center platform and the two arms. Rats that received bilateral infusions of saline into the dorsal entorhinal cortex before the training trials or before the test trial spent significantly more time in the arm that previously contained food than in the arm that never contained food, demonstrating that they had acquired and were able to express information that discriminated between the two adjacent maze arms. In contrast, rats that received bilateral, intra-entorhinal infusions of muscimol, a gamma-aminobutyric acida (GABAa) agonist, before either training or testing spent equal amounts of time in the two arms, indicating that they failed to acquire and were unable to express this information. Interactions between the entorhinal cortex and hippocampus in the acquisition and expression of the information required for this discrimination are discussed. 相似文献
3.
Bardgett ME Griffith MS Foltz RF Hopkins JA Massie CM O'Connell SM 《Neurobiology of learning and memory》2006,85(1):86-94
Clozapine is an atypical antipsychotic drug that has been shown to improve spatial memory in some animal models; however its efficacy in reversing spatial memory impairment in rats with hippocampal lesions is unknown. To address this issue, we tested the effects of clozapine on delayed spatial alternation deficits in rats with hippocampal damage in three separate experiments. In each experiment, adult male rats received sham surgery or direct stereotaxic infusions of the excitotoxin, NMDA, into the hippocampus. In the first study, seven days after surgery, the sham control animals received daily saline injections while the lesioned animals were split into two groups that received daily saline or clozapine (2.0 mg/kg, sc) injections. During the fifth week of injections, all animals were tested in a food-motivated delayed spatial alternation task. Saline-treated rats with excitotoxic hippocampal damage displayed significant deficits in delayed spatial alternation. Daily clozapine injections completely reversed this deficit. In a second experiment, it was found that clozapine treatment limited to the testing days only did not improve alternation performance in lesioned rats. Finally, in a third experiment, chronic clozapine treatment did not improve alternation performance in lesioned rats that were pre-trained in the alternation task prior to surgery. These results suggest that chronic, but not acute, clozapine treatment enables rats with hippocampal damage to develop new spatial learning, but can not rescue old spatial learning established prior to damage. These results may have implications for the treatment of cognitive deficits caused by hippocampal dysfunction in disorders such as schizophrenia, Alzheimer's disease, and others. 相似文献
4.
The role of the perirhinal cortex in inhibitory eyeblink conditioning was examined. In Experiment 1, rats were given lesions of the perirhinal cortex or control surgery and subsequently trained with a feature-negative discrimination procedure followed by summation and retardation tests for conditioned inhibition. Perirhinal cortex lesions impaired, but did not prevent acquisition of feature-negative discrimination. Results from the summation test showed that rats with perirhinal cortex lesions could not generalize feature-negative discrimination to a new stimulus. There were no group differences during the retardation test. Experiment 2 showed that lesions of the perirhinal cortex did not impair simple excitatory conditioning. Experiment 3 showed that perirhinal cortex lesions had no effect on acquisition of a simple tone-light discrimination. The results suggest that the perirhinal cortex plays a role in eyeblink conditioning when using discrimination procedures involving overlapping stimuli. 相似文献
5.
Freeman JH Halverson HE Hubbard EM 《Learning & memory (Cold Spring Harbor, N.Y.)》2007,14(12):842-846
The neural plasticity necessary for acquisition and retention of eyeblink conditioning has been localized to the cerebellum. However, the sources of sensory input to the cerebellum that are necessary for establishing learning-related plasticity have not been identified completely. The inferior colliculus may be a source of sensory input to the cerebellum through its projection to the medial auditory thalamus. The medial auditory thalamus is necessary for eyeblink conditioning in rats and projects to the lateral pontine nuclei, which then project to the cerebellar nuclei and cortex. The current experiment examined the role of the inferior colliculus in auditory eyeblink conditioning. Rats were given bilateral or unilateral (contralateral to the conditioned eye) lesions of the inferior colliculus prior to 10 d of delay eyeblink conditioning with a tone CS. Rats with bilateral or unilateral lesions showed equivalently impaired acquisition. The extent of damage to the contralateral inferior colliculus correlated with several measures of conditioning. The findings indicate that the contralateral inferior colliculus provides auditory input to the cerebellum that is necessary for eyeblink conditioning. 相似文献
6.
Stranahan AM Salas-Vega S Jiam NT Gallagher M 《Neurobiology of learning and memory》2011,96(2):150-155
Entorhinal neurons receive extensive intracortical projections, and form the primary input to the hippocampus via the perforant pathway. The glutamatergic cells of origin for the perforant pathway are distinguished by their expression of reelin, a glycoprotein involved in learning and synaptic plasticity. The functional significance of reelin signaling within the entorhinal cortex, however, remains unexplored. To determine whether interrupting entorhinal reelin signaling might have consequences for learning and memory, we administered recombinant receptor-associated protein (RAP) into the lateral entorhinal cortex (LEC) of young Long-Evans rats. RAP prevents reelin from binding to its receptors, and we verified the knockdown of reelin signaling by quantifying the phosphorylation state of reelin’s intracellular signaling target, disabled-1 (DAB1). Effective knockdown of reelin signaling was associated with impaired performance in the hippocampus-dependent version of the water maze. Moreover, inhibition of reelin signaling induced a localized loss of synaptic marker expression in the LEC. These observations support a role for entorhinal reelin signaling in spatial learning, and suggest that an intact reelin signaling pathway is essential for synaptic integrity in the adult entorhinal cortex. 相似文献
7.
8.
Episodic memory is the ability to recollect one's past experiences occurring in an unique spatial and temporal context. In non-human animals, it is expressed in the ability to combine "what", "where" and "when" factors to form an integrated memory system. During the search for its neural substrates, the hippocampus has attracted a lot of attentions. Yet, it is not yet possible to induce a pure episodic-like memory deficit in animal studies without being confounded by impairments in the spatial cognition. Here, we present a lesion study evidencing direct links between the hippocampus CA3 region and the episodic-like memory in rats. In a spontaneous object exploration task, lesioned rats showed no interaction between the temporal and spatial elements in their memory associated with the objects. In separate tests carried out subsequently, the same animals still expressed abilities to process spatial, temporal, and object recognition memory. In conclusions, our results support the idea that the hippocampus CA3 has a particular status in the neural mechanism of the episodic-like memory system. It is responsible for combining information from different modules of cognitive processes. 相似文献
9.
Extracellular signal-regulated kinase activity in the entorhinal cortex is necessary for long-term spatial memory 总被引:2,自引:0,他引:2
下载免费PDF全文

Lesion studies have provided evidence that the entorhinal cortex (EC) participates in spatial memory. However, the molecular cascades that underlie memory-associated changes in the EC and its specific role in spatial memory, however, have not been clearly delineated. Recently, it has been shown that activation of extracellular signal-regulated kinase (Erk, a mitogen-activated protein kinase family member) in the dorsal hippocampus is necessary for spatial memory. To examine whether similar mechanisms are used for spatial memory storage in the EC, Erk activity was inhibited after training in the Morris water maze. Bilateral infusion of the mitogen-activated protein kinase kinase inhibitor PD098059 into the EC immediately after training resulted in a memory deficit observed during a retention test performed 48 h later. This deficit was abolished with pretraining in a different water maze in which animals were able to learn the general task requirements and the appropriate search strategies. The absence of a deficit indicates that Erk activity in the EC may be involved in storing the task requirements or the search strategies. The findings presented in this article are consistent with the idea that the EC is involved in spatial memory and indicate that Erk activity is necessary for memory consolidation in this structure. 相似文献
10.
Intrinsic persistent spiking mechanisms in medial entorhinal cortex (mEC) neurons may play a role in active maintenance of working memory. However, electrophysiological studies of rat mEC units have primarily focused on spatial modulation. We sought evidence of differential spike rates in the mEC in rats trained on a T-maze, cued spatial delayed response task. Animals begin at the base of the T-maze where a 1-sec white noise and visual light cue are presented on the left or right side of the maze. Rats are rewarded for responding toward the cued direction. In correct trials, we observed decreased spike rates during the delay period, the time interval between cue presentation and reward delivery. Firing-rate histograms show significant decreases during the delay period compared to 5-sec windows from both pre-cue and post-reward periods. We analyzed how running speed and trajectory specificity correlated to spike rate. Twice as many cells were responsive to cue alone compared to running speed. Trajectory specificity did not relate significantly to firing rate. Decreased spike rate may reflect active maintenance in other structures inhibiting mEC. Alternately, the reduction may reflect decreases in background activity during enhanced attention and cholinergic modulation. Lastly, animals often ran through the T-maze choice-point with varying speed. We calculated the spatial posterior probability density from spike rates during these choice-point passes. Slow passes through the choice point were characterized by greater probability of decoding to the reward locations on correct trials compared to quick passes on the maze consistent with similar "look-ahead" properties previously reported in the hippocampus and ventral striatum. 相似文献
11.
12.
Taste aversion learning can be established according to two different procedures, concurrent and sequential. For the concurrent task, two different taste stimuli are offered at the same time, one associated with simultaneous intragastric administration of an aversive stimulus and the other associated with physiological saline. This discrimination is learned by sham-lesioned control animals and by animals with lesions in the cerebellar cortex but not by rats lesioned in the inferior olive. At the same time, animals with lesions in the inferior olive and sham-lesioned animals achieve sequential learning when the gustatory stimuli are offered individually during each daily session. The results obtained show that electrolytic lesions in the inferior olive impair acquisition of concurrent learning and are analyzed in terms of an anatomical system consisting of the vagus nerve, inferior olive, and cerebellum, which differentiates between the two modalities of taste aversion learning, concurrent and sequential. 相似文献
13.
The rodent hippocampal system is known to play an important role in memory. Evidence that this role is not limited to spatial memory has come from studies using a variety of non-spatial memory tasks. One example is the social transmission of food preference paradigm, a task in which rats learn an odor-odor association with no explicit spatial memory component. However, because training and testing in this task typically take place in the same environment, it is possible that memory for the spatial context in which odors are experienced during training is critical to subsequent retention performance. If this is the case, it might be expected that lesions of the hippocampal system would impair memory performance by disrupting the establishment of a representation of the training environment. We addressed this issue by training rats in one spatial context and then testing them either in the same or a different spatial context. Normal control rats performed equally well when tested in an environment that was the same or different from that used during training, and the retention impairment exhibited by rats with hippocampus plus subiculum lesions was equivalent in the two test environments. These results support the view that the hippocampal system is necessary for the flexible expression of nonspatial memories even when the spatial context in which the memory is acquired is not critical to retrieval. 相似文献
14.
Extensive lesions of cholinergic basal forebrain neurons do not impair spatial working memory
下载免费PDF全文

A recent studysuggests that lesions to all major areas of the cholinergic basal forebrain in the rat (medial septum, horizontal limb of the diagonal band of Broca, and nucleus basalis magnocellularis) impair a spatial working memory task. However, this experiment used a surgical technique that mayhave damaged cerebellar Purkinje cells. The present studytested rats with highlyselective lesions of cholinergic neurons in all major areas of the basal forebrain on a spatial working memorytask in the radial arm maze. In postoperative testing, there were no significant differences between lesion and control groups in working memory, even with a delayperiod of 8 h, with the exception of a transient impairment during the first 2 d of postoperative testing at shorter delays (0 or 2 h). This finding corroborates other results that indicate that the cholinergic basal forebrain does not playa significant role in spatial working memory. Furthermore, it underscores the presence of intact memoryfunctions after cholinergic basal forebrain damage, despite attentional impairments that follow these lesions, demonstrated in other task paradigms. 相似文献
15.
Hippocampal (HF)-lesioned pigeons display impaired homing ability when flying over familiar terrain, where they are presumably relying on a map-like representation of familiar landmarks to navigate. However, research carried out in the field precludes a direct test of whether hippocampal lesions compromise the ability of homing pigeons to navigate by familiar landmarks. To examine more thoroughly the relationship between hippocampus and landmark spatial learning, control, neostriatum-lesioned, and HF-lesioned homing pigeons were trained on two open field, laboratory, conditional discrimination tasks. One was a visual landmark array task, and the other was a room color discrimination task. For the tasks, the correct of three differently colored food bowls was determined by the spatial relationship among a group of five landmarks and room color, respectively. Intact control birds successfully learned both tasks, while neostriatum-lesioned birds successfully learned the landmark array task-the only task on which they were trained. By contrast, HF-lesioned birds successfully learned the room color task but were unable to learn the landmark array task. The data support the hypothesis that homing performance deficits observed in the field following hippocampal lesions are in part a consequence of an impairment in the ability of lesioned pigeons to use familiar visual landmarks for navigation. 相似文献
16.
The septo-hippocampal system in birds resembles that of mammals, motivating research into the function of the avian hippocampus while surprisingly little attention has been given to the septum. To investigate a possible role of the avian septum in memory, the effects of septal area lesions on a spatial working memory (SpWM) task was tested in homing pigeons. After preoperative training on an analogue eight-arm (feeders) radial maze, now sham-operated control and septal lesioned pigeons were then trained again on the same task of locating the four feeders on the test phase of a trial that were not baited during the sample phase of a trial. During the test phase of a working memory trial, septal lesioned pigeons, compared to both their own preoperative performance and the performance of the controls, required significantly more choices to locate the four baited feeders not baited during the sample phase of a trial, and they made significantly fewer correct responses to the now baited feeders on their first four choices. The results demonstrate that, like its mammalian counterpart, the avian septum plays an important role in SpWM, suggesting that at least some functional properties of the septum are evolutionarily conserved in birds and mammals. 相似文献
17.
Increasing acetylcholine levels in the hippocampus or entorhinal cortex reverses the impairing effects of septal GABA receptor activation on spontaneous alternation 总被引:4,自引:0,他引:4
下载免费PDF全文

Intra-septal infusions of the γ-aminobutyric acid (GABA) agonist muscimol impair learning and memory in a variety of tasks. This experiment determined whether hippocampal or entorhinal infusions of the acetylcholinesterase inhibitor physostigmine would reverse such impairing effects on spontaneous alternation performance, a measure of spatial working memory. Male Sprague-Dawley rats were given intra-septal infusions of vehicle or muscimol (1 nmole/0.5 μL) combined with unilateral intra-hippocampal or intra-entorhinal infusions of vehicle or physostigmine (10 μg/μL for the hippocampus; 7.5 μg/μL or 1.875 μg/0.25 μL for the entorhinal cortex). Fifteen minutes later, spontaneous alternation performance was assessed. The results indicated that intra-septal infusions of muscimol significantly decreased percentage-of-alternation scores, whereas intra-hippocampal or intra-entorhinal infusions of physostigmine had no effect. More importantly, intra-hippocampal or intra-entorhinal infusions of physostigmine, at doses that did not influence performance when administered alone, completely reversed the impairing effects of the muscimol infusions. These findings indicate that increasing cholinergic levels in the hippocampus or entorhinal cortex is sufficient to reverse the impairing effects of septal GABA receptor activation and support the hypothesis that the impairing effects of septal GABAergic activity involve cholinergic processes in the hippocampus and the entorhinal cortex. 相似文献
18.
Effects of vasopressin were measured in a nonspatial working memory task: food-reinforced, delayed matching to sample. Subcutaneous injections of 0.2 microgram of lysine vasopressin (LVP) or saline were alternately administered to Sprague-Dawley rats after the presentation of the sample and compared to the effect of the same treatments given to a yoked control group of rats. Different durations of sample presentation (5 and 30 min) and various retention intervals (10 min, 3 h, 24 h) were selected. The results showed that LVP never facilitated retention performance: there was no improvement under conditions of weak memory (short presentation of the sample and long retention interval); moreover LVP abolished the facilitation normally obtained when either the length of the sample presentation was longer or the duration of the retention interval was shorter. The performance after the injection of the peptide was differentially impaired, according to brightness of the sample which had been presented: after the presentation of the white box, LVP injections lead to more errors and after that of the black one the treatment induced an increase in latencies of response. All these data may suggest that the physiological consequences of hormonal modifications triggered by the LVP injection are processed along with the stimuli of the learning episode and interfere with the learned positive value of the sample. 相似文献
19.