首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fractal models for event-based and dynamical timers   总被引:2,自引:0,他引:2  
Some recent papers proposed to distinguish between event-based and emergent timing. Event-based timing is conceived as prescribed by events produced by a central clock, and seems to be used in discrete tasks (e.g., finger tapping). Emergent or dynamical timing refers to the exploitation of the dynamical properties of effectors, and is typically used in continuous tasks (e.g., circle drawing). The analysis of period series suggested that both timing control processes possess fractal properties, characterized by self-similarity and long-range dependence. The aim of this article is to present two models that produce period series presenting the statistical properties previously evidenced in discrete and continuous rhythmic tasks. The first one is an adaptation of the classical activation/threshold models, including a plateau-like evolution of the threshold over time. The second one is a hybrid limit-cycle model, including a time-dependent linear stiffness parameter. Both models reproduced satisfactorily the spectral signatures of event-based and dynamical timing processes, respectively. The models also produced auto-correlation functions similar to those experimentally observed. Using ARFIMA modeling we show that these simulated series possess fractal properties. We suggest in conclusion some possible extensions of this modeling approach, to account for the effects of metronomic pacing, or to analyze bimanual coordination.  相似文献   

2.
It has been suggested that the temporal control of rhythmic unimanual movements is different between tasks requiring continuous (e.g., circle drawing) and discontinuous movements (e.g., finger tapping). Specifically, for continuous movements temporal regularities are an emergent property, whereas for tasks that involve discontinuities timing is an explicit part of the action goal. The present experiment further investigated the control of continuous and discontinuous movements by comparing the coordination dynamics and attentional demands of bimanual continuous circle drawing with bimanual intermittent circle drawing. The intermittent task required participants to insert a 400ms pause between each cycle while circling. Using dual-task methodology, 15 right-handed participants performed the two circle drawing tasks, while vocally responding to randomly presented auditory probes. The circle drawing tasks were performed in symmetrical and asymmetrical coordination modes and at movement frequencies of 1Hz and 1.7Hz. Intermittent circle drawing exhibited superior spatial and temporal accuracy and stability than continuous circle drawing supporting the hypothesis that the two tasks have different underlying control processes. In terms of attentional cost, probe RT was significantly slower during the intermittent circle drawing task than the continuous circle drawing task across both coordination modes and movement frequencies. Of interest was the finding that in the intermittent circling task reaction time (RT) to probes presented during the pause between cycles did not differ from the RT to probes occurring during the circling movement. The differences in attentional demands between the intermittent and continuous circle drawing tasks may reflect the operation of explicit event timing and implicit emergent timing processes, respectively.  相似文献   

3.
One of the questions yet to be fully understood is to what extent the properties of the sensory and the movement information interact to facilitate sensorimotor integration. In this study, we examined the relative contribution of the continuity compatibility between motor goals and their sensory outcomes in timing variability. The variability of inter-response intervals was measured in a synchronization-continuation paradigm. Participants performed two repetitive movement tasks whereby they drew circles either using continuous or discontinuous self-paced movements while receiving discrete or continuous auditory feedback. The results demonstrated that the effect of perceptual-motor continuity compatibility may be limited in self-paced auditory-motor synchronization as timing variability was not significantly influenced by the continuity of the feedback or the continuity compatibility between feedback and the movement produced. In addition, results suggested that the presence of salient perceptual events marking the completion of the time intervals elicited a common timing process in both continuous and discontinuous circle drawing, regardless of the continuity of the auditory feedback. These findings open a new line of investigation into the role of the discriminability and reliability of the event-based information in determining the nature of the timing mechanisms engaged in continuous and discontinuous self-paced rhythmic movements.  相似文献   

4.
The effect of practice variations on spatial and temporal accuracy was investigated in both discrete and continuous aiming movements in the preferred hand of college-aged participants (N=25). In a completely within-subject design, participants made rapid reversal movements with a lightweight lever in the sagittal plane, practicing 20 degrees and 60 degrees movements in repeated (same distance) and alternating (switching between 20 degrees and 60 degrees) conditions. Movements were also made one at a time (discretely) or in sequences of 20 movements (continuously). Spatial constant error, spatial variable error, spatial overall error, the coefficient of variation, movement time, and the relative timing were calculated for each set of 20 movements and analyzed by within-subject analyses of variance. Movements in the repeated conditions for both discrete and continuous movements were more accurate and consistent compared to the alternating condition where the short movements were overshot and the long movements were undershot. Discrete movements were more spatially and temporally variable than continuous movements. The discrete and continuous movements showed different relative timing patterns, suggesting that the temporal structure of the motor program is affected by task characteristics.  相似文献   

5.
Two experiments examined whether time‐based prospective memory performance is influenced by the continuous or discontinuous nature of an ongoing activity. The first experiment demonstrated that prospective memory performance was not influenced by the engagement in continuous or discontinuous ongoing activity. The second experiment demonstrated that a discontinuous ongoing activity negatively affected prospective memory performance when participants had to execute two time‐based tasks for which the retention intervals partially overlapped. The results suggest that when individuals are engaged in multiple time‐based tasks, a general timing disruption occurs, with a proactive interference effect resulting in costs that are detrimental to prospective timing. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Recent investigations of timing in motor control have been interpreted as support for the concept of brain modularity. According to this concept, the brain is organized into functional modules that contain mechanisms responsible for general processes. Keele and colleagues (Keele & Hawkins, 1982; Keele & Ivry, 1987; Keele, Ivry, & Pokorny, 1987; Keele, Pokorny, Corcos, & Ivry, 1985) demonstrated that the within-subject variability in. cycle duration of repetitive movements is correlated across finger, forearm, and foot movements, providing evidence in support of a general timing module. The present study examines the notion of timing modularity of speech and nonspeech movements of the oral motor system as well as the manual motor system. Subjects produced repetitive movements with the finger, forearm, and jaw. In addition, a fourth task involved the repetition of a syllable. All tasks were to be produced with a 400-ms cycle duration; target duration was established with a pacing tone, which then was removed. For each task, the within-subject variability of the cycle duration was computed for the unpaced movements over 20 trials. Significant correlations were found between each pair of effectors and tasks. The present results provide evidence that common timing processes are involved not only in movements of the limbs, but also in speech and nonspeech movements of oral structures.  相似文献   

7.
Recent investigations of timing in motor control have been interpreted as support for the concept of brain modularity. According to this concept, the brain is organized into functional modules that contain mechanisms responsible for general processes. Keele and colleagues (Keele & Hawkins, 1982; Keele & Ivry, 1987; Keele, Ivry, & Pokorny, 1987; Keele, Pokorny, Corcos, & Ivry, 1985) demonstrated that the within-subject variability in cycle duration of repetitive movements is correlated across finger, forearm, and foot movements, providing evidence in support of a general timing module. The present study examines the notion of timing modularity of speech and nonspeech movements of the oral motor system as well as the manual motor system. Subjects produced repetitive movements with the finger, forearm, and jaw. In addition, a fourth task involved the repetition of a syllable. All tasks were to be produced with a 400-ms cycle duration; target duration was established with a pacing tone, which then was removed. For each task, the within-subject variability of the cycle duration was computed for the unpaced movements over 20 trials. Significant correlations were found between each pair of effectors and tasks. The present results provide evidence that common timing processes are involved not only in movements of the limbs, but also in speech and nonspeech movements of oral structures.  相似文献   

8.
We report an experiment that tested whether effects of altered auditory feedback (AAF) during piano performance differ from its effects during singing. These effector systems differ with respect to the mapping between motor gestures and pitch content of auditory feedback. Whereas this action-effect mapping is highly reliable during phonation in any vocal motor task (singing or speaking), mapping between finger movements and pitch occurs only in limited situations, such as piano playing. Effects of AAF in both tasks replicated results previously found for keyboard performance (Pfordresher, 2003), in that asynchronous (delayed) feedback slowed timing whereas alterations to feedback pitch increased error rates, and the effect of asynchronous feedback was similar in magnitude across tasks. However, manipulations of feedback pitch had larger effects on singing than on keyboard production, suggesting effector-specific differences in sensitivity to action-effect mapping with respect to feedback content. These results support the view that disruption from AAF is based on abstract, effector independent, response-effect associations but that the strength of associations differs across effector systems.  相似文献   

9.
时间认知神经科学研究进展   总被引:6,自引:1,他引:5  
杨珍  黄希庭 《心理科学》2005,28(6):1506-1509
当前对时间认知的脑机制探讨有三个模型:特异化计时模型、分布网络模型和定域计时模型。在这些模型的框架下,时间认知的神经心理学研究集中探讨了小脑、基底神经节、前额叶在时间信息加工中的作用和大脑两半球在时间认知中的不对称性。小脑作为内部计时系统对时间控制具有重要作用,在周期性动作任务中,小脑对不连续动作计时具有特异性。基底神经节在时间加工任务中与小脑存在明显的作用分离,其具体机制还有待深入研究。前额叶的计时功能可能与注意和工作记忆对时间信息的获得、维持和组织有关。此外,还发现大脑右半球与时问信息的加工关系密切。  相似文献   

10.
This article reports a detailed examination of timing in the vibrotactile modality and comparison with that of visual and auditory modalities. Three experiments investigated human timing in the vibrotactile modality. In Experiment 1, a staircase threshold procedure with a standard duration of 1,000 ms revealed a difference threshold of 160.35 ms for vibrotactile stimuli, which was significantly higher than that for auditory stimuli (103.25 ms) but not significantly lower than that obtained for visual stimuli (196.76 ms). In Experiment 2, verbal estimation revealed a significant slope difference between vibrotactile and auditory timing, but not between vibrotactile and visual timing. That is, both vibrations and lights were judged as shorter than sounds, and this comparative difference was greater at longer durations than at shorter ones. In Experiment 3, performance on a temporal generalization task showed characteristics consistent with the predications of scalar expectancy theory (SET: Gibbon, 1977) with both mean accuracy and scalar variance exhibited. The results were modelled using the modified Church and Gibbon model (MCG; derived by Wearden, 1992, from Church & Gibbon 1982). The model was found to give an excellent fit to the data, and the parameter values obtained were compared with those for visual and auditory temporal generalization. The pattern of results suggest that timing in the vibrotactile modality conforms to SET and that the internal clock speed for vibrotactile stimuli is significantly slower than that for auditory stimuli, which is logically consistent with the significant differences in difference threshold that were obtained.  相似文献   

11.
ABSTRACT The authors' aim was to understand how persons with Down syndrome (DS) perform different tasks and to assess if there were any differences in performance based on the type of instructions. This is important because of neurological differences in persons with DS and neurological demands for performing different types of tasks. Twenty right-handed participants with DS, 20 chronological age-matched (CA), and 20 mental age-matched (MA) performed unimanual, bimanual, discrete, and continuous drumming following visual, auditory, and verbal instructions. Overall, discrete drumming was performed with shorter movement times than continuous drumming and unimanual drumming was performed with shorter movement amplitude than bimanual drumming. With respect to instructions, persons with DS performed with smaller amplitudes, thus more efficient movements, following the visual instructions than auditory and verbal instructions for all types of tasks, whereas CA performed similarly with all instructions and MA performed with smaller amplitudes with visual instructions than auditory instructions. These results suggest that visual instruction provides the best information for people with DS to aid in performance of many different types of movements.  相似文献   

12.
The authors' primary purpose in the present experiment was to determine if practice changes the extent to which simple motor sequences are effector independent. Contralateral and ipsilateral effector transfers were assessed in 24 participants after 1 (200 trials) and 4 (800 trials) days of practice. The response sequence became increasingly effector dependent; the response structure and the scaling of force on the effector transfer tests were no better after 4 days of practice than after only 1 day, even though retention performance improved substantially. Those results are consistent with the notion that participants refine their movements over extended practice by exploiting the unique characteristics of the effectors. The additional practice results in a more effective movement when the same effectors are used but is of little value when different effectors are required.  相似文献   

13.
The authors' primary purpose in the present experiment was to determine if practice changes the extent to which simple motor sequences are effector independent. Contralateral and ipsilateral effector transfers were assessed in 24 participants after 1 (200 trials) and 4 (800 trials) days of practice. The response sequence became increasingly effector dependent; the response structure and the scaling of force on the effector transfer tests were no better after 4 days of practice than after only 1 day, even though retention performance improved substantially. Those results are consistent with the notion that participants refine their movements over extended practice by exploiting the unique characteristics of the effectors. The additional practice results in a more effective movement when the same effectors are used but is of little value when different effectors are required.  相似文献   

14.
We applied spectral analysis on series of time intervals produced in a synchronization-continuation experiment. In the first condition intervals were produced by finger tapping, and in the second by an oscillatory motion of the hand. Results obtained in tapping were consistent with a discrete, event-based timing model. In the oscillatory condition, the spectra suggested a continuous, dynamic timing mechanism, based on the regulation of effector stiffness. It is concluded that the oscillatory character of movement can offer an important resource for timing control. The use of an event-based timing control such as postulated in the Wing-Kristoffersson model could be restricted to a quite limited class of rhythmic tasks, characterized by the concatenation of discrete events.  相似文献   

15.
Data from studies of timing in human participants were reviewed with respect to their conformity to the two scalar properties of timing: mean accuracy and the scalar property of variance. Results reviewed were taken from studies of temporal generalization, temporal bisection, discrimination methods, and “classical” timing tasks such as the reproduction, production, and verbal estimation of duration. Evidence for one or both scalar properties was found in many studies, including those using children and elderly participants, but systematic violations were sometimes noted. These violations occurred (a) when very short durations (<100 ms) were timed, (b) in situations in which timing tasks varying in difficulty were compared, (c) when classical timing tasks were employed, and (d) in situations where highly practised observers exhibited unusual patterns of variance. A later section attempted to reconcile some of these violations with an underlying scalar-consistent timing mechanism.  相似文献   

16.
In the present study, we characterize how the ability to decouple guiding visual information from a motor action emerges during childhood and adolescence. Sixty-two participants (age range 8–15 yrs.) completed two eye-hand coordination tasks. In a direct interaction task, vision and motor action were in alignment, and participants slid their finger along a vertical touch screen to move a cursor from a central target to one of four peripheral targets. In an eye-hand-decoupled task, eye and hand movements were made in different planes and cursor feedback was 180° reversed. We analyzed whether movement planning, timing and trajectory variables differed across age in both task conditions. There were no significant relationships between age and any movement planning, timing, or execution variables in the direct interaction task. In contrast, in the eye-hand-decoupled task, we found a relationship between age and several movement planning and timing variables. In adolescents (13–15 yrs.), movement planning and timing was significantly shorter than that of young children (8–10 yrs.). Eye-hand-decoupled maturation emerged mainly during late childhood (11–12 yrs.). Notably, we detected performance differences between young children and adolescents exclusively during the eye-hand decoupling task which required the integration of rule-based cognitive information into the motor action. Differences were not observed during the direct interaction task. Our results quantify an important milestone for eye-hand-decoupling development in late childhood, leading to improved rule-based motor performance in early adolescence. This eye-hand-decoupling development may be due to frontal lobe development linked to rule-based behavior and the strengthening of fronto-parietal networks.  相似文献   

17.
When one performs visuo-manual tracking tasks, velocity profile of hand movements shows discontinuous patterns even if the target moves smoothly. A crucial factor of this “intermittency” is considerable delay in the sensorimotor feedback loop, and several researchers have suggested that the cause is intermittent correction of motor commands. However, when and how the brain monitors task performance and updates motor commands in a continuous motor task is uncertain. We examined how tracking error was affected by the timing of target disappearance during a tracking task. Results showed that tracking error, defined as the average phase difference between target and hand, varied periodically in all conditions. Hand preceded target at one specific phase but followed it at another, implying that motor control was not performed in a temporally uniform manner. Tracking stability was evaluated by the variance in phase difference, and changed depending on the timing of target-removal. The variability was larger when target disappeared around turning points than that when it disappeared around the center of motion. This shows that visual information at turning points is more effectively exploited for motor control of sinusoidal target tracking, suggesting that our brain controls hand movements with intermittent reference to visual information.  相似文献   

18.
The article reviews data from animal subjects on a range of timing tasks (including fixed-interval and temporal differentiation schedules, stimulus timing, aversive conditioning, and Pavlovian methods) with respect to conformity to the two scalar properties of timing behaviour: mean accuracy and scalar (Weberian) variance. Systematic deviations were found in data from temporal differentiation schedules, timing of very short (<100 ms) or very long (>100 s) durations, effects of “task difficulty”, and some special cases where circadian and interval timing seemed to interact, or where some specific durations seemed to be timed more precisely than others. Theoretical reconciliation of some of these deviations with underlying scalar timing can be achieved, but a number of problematical cases remain unexplained.  相似文献   

19.
We examined differences between the synchronization and self-pacing tasks using repetitive tapping with alternate hands. 9 adolescents with mental retardation made faster and more variable movements on the self-pacing task than on the synchronization task at target intervals of 400 and 800 msec. This suggests that they were able to coordinate the timing of individual responses with individual stimuli on the synchronization task but on the self-pacing task they controlled the timing by memory or generation or setting of an incorrect timer rate.  相似文献   

20.
Cyclic tasks are performed better than discrete tasks in adults but it is unknown whether this advantage is present in children as well. Three age groups of participants (6, 8, and 10 years old) executed cyclic and discrete aiming movements to two differently sized target using a Fitts task to examine the developmental effects on speed/accuracy trade-off. Children showed the same advantage of cyclic over discrete movements as previously demonstrated for adults but at a slower speed. The slope of the speed accuracy trade-off was similar in the three age groups in the cyclic as compared to the discrete control mode, suggesting that children learn both tasks equally well in this age range. The index of performance (IP) increased with age but not differently for the two control modes. Children showed clear differences between the kinematics of discrete and cyclic movements and these differences were similar to those seen in adults. Cyclic movements were faster, had higher IP, showed fewer changes in velocity and were more ballistic. Thus movement execution was different between the two tasks, consistent with the hypothesis that cyclic tasks make use of neural oscillators. The slower movement speed in young children is consistent with their limited ability to use open loop control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号