首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A neural basis for expert object recognition   总被引:6,自引:0,他引:6  
Although most adults are considered to be experts in the identification of faces, fewer people specialize in the recognition of other objects, such as birds and dogs. In this research, the neurophysiological processes associated with expert bird and dog recognition were investigated using event-related potentials. An enhanced early negative component (N170, 164 ms) was found when bird and dog experts categorized objects in their domain of expertise relative to when they categorized objects outside their domain of expertise. This finding indicates that objects from well-learned categories are neurologically differentiated from objects from lesser-known categories at a relatively early stage of visual processing.  相似文献   

2.
Blindfold chess is played without the players seeing either the pieces or the board. It is a skill‐related activity, and only very skilled players can construct the mental images required. This is why blindfold chess provides a good task with which to investigate the spatial memory and skilled mental images of expert players. In a PET investigation, we compared memory performance and problem solving in very experienced chess players with their performance in an attention task, in which the subjects classified the names of chess pieces. The memory task predominantly activated the temporal areas, whereas problem solving activated several frontal areas. The relevance of these findings to concepts such as general imagery, skilled imagery, apperception, and long‐term working memory are discussed.  相似文献   

3.
4.
We review the organization of the neural networks that underlie haptic object processing and compare that organization with the visual system. Haptic object processing is separated into at least two neural pathways, one for geometric properties or shape, and one for material properties, including texture. Like vision, haptic processing pathways are organized into a hierarchy of processing stages, with different stages represented by different brain areas. In addition, the haptic pathway for shape processing may be further subdivided into different streams for action and perception. These streams may be analogous to the action and perception streams of the visual system and represent two points of neural convergence for vision and haptics.  相似文献   

5.
Participants viewed objects in the central visual field and then named either same or different depth-orientation views of these objects presented briefly in the left or the right visual field. The different-orientation views contained either the same or a different set of parts and relations. Viewpoint-dependent priming was observed when test views were presented directly to the right hemisphere (RH), but not when test views were presented directly to the left hemisphere (LH). Moreover, this pattern of results did not depend on whether the same or a different set of parts and relations could be recovered from the different-orientation views. Results support the theory that a specific subsystem operates more effectively than an abstract subsystem in the RH and stores objects in a manner that produces viewpoint-dependent effects, whereas an abstract subsystem operates more effectively than a specific subsystem in the LH and does not store objects in a viewpoint-dependent manner.  相似文献   

6.
7.
Two experiments explored the existence and the development of relations between action representations and object representations. A priming paradigm was used in which participants viewed an action pantomime followed by the picture of a tool, the tool being either associated or unassociated with the preceding action. Overall, we observed that the perception of an action pantomime can facilitate the recognition of a corresponding tool. Experiment 1 was based on a naming task and was conducted with 9- to 12-year-old children and a group of young adults. While substantial priming effects were obtained for all age groups, they were especially important for the youngest participants. Smaller priming effects were obtained in Experiment 2, using a categorization task and conducted on 5- to 11-year-old children and young adults, but again the results suggest that these action priming effects diminish with increasing age. Implications of these results for the organization and development of conceptual knowledge are discussed.  相似文献   

8.
People name well-known objects shown in pictures more quickly if they have studied them previously. The most common interpretation of this priming effect is that processing is facilitated by an implicit memory trace in a perceptual representation system. We show that object priming can be explained instead as a bias in information processing, without recourse to an implicit memory system. Assumptions about psychological decision-making processes and bias were added to a neural network model for object identification, and the model accounted for performance both qualitatively and quantitatively in four object identification experiments.  相似文献   

9.
Human occipitotemporal cortex (OTC) is critically involved in object recognition, but the functional organization of this brain region is controversial. In the present study, functional magnetic resonance imaging (fMRI) signal changes were recorded in humans during an animal-matching task that parametrically varied degree of structural (i.e., shape) similarity among the items. fMRI signal in the midto anterior-fusiform gyrus increased as animals overlapped more in terms of structure and as reaction time increased. In contrast, relatively more posterior aspects of the fusiform gyrus and inferior occipital cortex showed greater fMRI signal when the animals overlapped less in terms of structure. A similar organization emerged when three-dimensional geometric shapes were matched, indicating that OTC is differentially tuned to varying degrees of overlap in object structure, regardless of taxonomic category. We discuss how the present findings fit in with current functional neuroanatomical approaches to object recognition.  相似文献   

10.
A new approach examined two aspects of chess skill, long a popular topic in cognitive science. A powerful computer‐chess program calculated the number and magnitude of blunders made by the same 23 grandmasters in hundreds of serious games of slow (“classical”) chess, regular “rapid” chess, and rapid “blindfold” chess, in which opponents transmit moves without ever seeing the actual position. Rapid chess led to substantially more and larger blunders than classical chess. Perhaps more surprisingly, the frequency and magnitude of blunders did not differ in rapid versus blindfold play, despite the additional memory and visualization load imposed by the latter. We discuss the involvement of various cognitive processes in human problem‐solving and expertise, especially with respect to chess. Prior opposing views about the basis of general chess skill have emphasized the dominance of either (a) swift pattern recognition or (b) analyzing ahead, but both seem important and the controversy appears currently unresolvable and perhaps fruitless.  相似文献   

11.
Hand movements: a window into haptic object recognition   总被引:15,自引:0,他引:15  
  相似文献   

12.
Perceptual decisions seem to be made automatically and almost instantly. Constructing a unitary subjective conscious experience takes more time. For example, when trying to avoid a collision with a car on a foggy road you brake or steer away in a reflex, before realizing you were in a near accident. This subjective aspect of object recognition has been given little attention. We used metacognition (assessed with confidence ratings) to measure subjective experience during object detection and object categorization for degraded and masked objects, while objective performance was matched. Metacognition was equal for degraded and masked objects, but categorization led to higher metacognition than did detection. This effect turned out to be driven by a difference in metacognition for correct rejection trials, which seemed to be caused by an asymmetry of the distractor stimulus: It does not contain object-related information in the detection task, whereas it does contain such information in the categorization task. Strikingly, this asymmetry selectively impacted metacognitive ability when objective performance was matched. This finding reveals a fundamental difference in how humans reflect versus act on information: When matching the amount of information required to perform two tasks at some objective level of accuracy (acting), metacognitive ability (reflecting) is still better in tasks that rely on positive evidence (categorization) than in tasks that rely more strongly on an absence of evidence (detection).  相似文献   

13.
We investigated to what extent participants can acquire the mastery of an auditory-substitution-of-vision device ('The vOICe') using dynamic tasks in a three-dimensional environment. After extensive training, participants took part in four experiments. In the first experiment we explored locomotion and localisation abilities. Participants, blindfolded and equipped with the device, had to localise a target by moving a hand-held camera, walk towards the target, and point at it. In the second experiment, we studied the localisation ability in a constrained pointing task. In the third experiment we explored participants' ability to recognise natural objects via their auditory rendering. In the fourth experiment we tested the ability of participants to discriminate objects belonging to the same category. We analysed participants' performance from both an objective and a subjective point of view. The results showed that participants, through sensorimotor interactions with the perceptual scene while using the hand-held camera, were able to make use of the auditory stimulation to obtain the information necessary for locomotor guidance, localisation, and pointing, as well as for object recognition. Furthermore, analysis from a subjective perspective yielded insights into participants' qualitative experience and into the strategies they used to master the device, and thus to pass from a kind of deductive reasoning to a form of immediate apprehension of what is being perceived.  相似文献   

14.
Based on theoretical considerations of Aurell (1979) and Block (1995), we argue that object recognition awareness is distinct from purely sensory awareness and that the former is mediated by neuronal activities in areas that are separate and distinct from cortical sensory areas. We propose that two of the principal functions of neuronal activities in sensory cortex, which are to provide sensory awareness and to effect the computations that are necessary for object recognition, are dissociated. We provide examples of how this dissociation might be achieved and argue that the components of the neuronal activities which carry the computations do not directly enter the awareness of the subject. The results of these computations are sparse representations (i.e., vector or distributed codes) which are activated by the presentation of particular sensory objects and are essentially engrams for the recognition of objects. These final representations occur in the highest order areas of sensory cortex; in the visual analyzer, the areas include the anterior part of the inferior temporal cortex and the perirhinal cortex. We propose, based on lesion and connectional data, that the two areas in which activities provide recognition awareness are the temporopolar cortex and the medial orbitofrontal cortex. Activities in the temporopolar cortex provide the recognition awareness of objects learned in the remote past (consolidated object recognition), and those in the medial orbitofrontal cortex provide the recognition awareness of objects learned in the recent past. The activation of the sparse representation for a particular sensory object in turn activates neurons in one or both of these regions of cortex, and it is the activities of these neurons that provide the awareness of recognition of the object in question. The neural circuitry involved in the activation of these representations is discussed.  相似文献   

15.
Crowding, the inability to recognize objects in clutter, sets a fundamental limit on conscious visual perception and object recognition throughout most of the visual field. Despite how widespread and essential it is to object recognition, reading and visually guided action, a solid operational definition of what crowding is has only recently become clear. The goal of this review is to provide a broad-based synthesis of the most recent findings in this area, to define what crowding is and is not, and to set the stage for future work that will extend our understanding of crowding well beyond low-level vision. Here we define six diagnostic criteria for what counts as crowding, and further describe factors that both escape and break crowding. All of these lead to the conclusion that crowding occurs at multiple stages in the visual hierarchy.  相似文献   

16.
17.
In this study, we systematically review the scientific literature on the effect of color on object recognition. Thirty-five independent experiments, comprising 1535 participants, were included in a meta-analysis. We found a moderate effect of color on object recognition (d = 0.28). Specific effects of moderator variables were analyzed and we found that color diagnosticity is the factor with the greatest moderator effect on the influence of color in object recognition; studies using color diagnostic objects showed a significant color effect (d = 0.43), whereas a marginal color effect was found in studies that used non-color diagnostic objects (d = 0.18). The present study did not permit the drawing of specific conclusions about the moderator effect of the object recognition task; while the meta-analytic review showed that color information improves object recognition mainly in studies using naming tasks (d = 0.36), the literature review revealed a large body of evidence showing positive effects of color information on object recognition in studies using a large variety of visual recognition tasks. We also found that color is important for the ability to recognize artifacts and natural objects, to recognize objects presented as types (line-drawings) or as tokens (photographs), and to recognize objects that are presented without surface details, such as texture or shadow. Taken together, the results of the meta-analysis strongly support the contention that color plays a role in object recognition. This suggests that the role of color should be taken into account in models of visual object recognition.  相似文献   

18.
19.
Qiu J  Li H  Yang D  Luo Y  Li Y  Wu Z  Zhang Q 《Brain and cognition》2008,68(1):100-106
The electrophysiological correlates of successful insight problem solving (Chinese logogriphs) were studied in 18 healthy subjects using high-density event-related potentials (ERPs). A new experimental paradigm (learning-testing model) was adopted in order to make subjects find a solution on their own initiative rather than receive an answer passively. Results showed that Successful guessed logogriphs elicited a more positive ERP deflection (P200-600) than did Unsuccessful guessed logogriphs in the time window from 200 to 600 ms after onset of the stimuli. Subsequently Successful logogriphs elicited a more negative ERP deflection than did Unsuccessful logogriphs in the time windows of 1500-2000 ms (N1500-2000) and 2000-2500 ms (N2000-2500). Maps of the P200-600 showed strong activity in the midline parieto-occipital scalp regions. Dipole analysis localized the generator of P200-600 in the left superior temporal gyrus and parietotemporo-occipital cortex areas. The N1500-2000 and N2000-2500 had a distinct activation over left frontal scalp regions. Dipole analysis localized the generator of the N1500-2000 in the anterior cingulate cortex (ACC) and the N2000-2500 in the posterior cingulate cortex (PCC). This result indicates that the parietotemporo-occipital cortex areas might be involved in forming rich associations in the early stage of successful logogriph solving. Then, the ACC might play an important role in the breaking mental set and the forming of novel associations. At last, "Aha" feeling might activate the PCC.  相似文献   

20.
Quartz SR  Sejnowski TJ 《The Behavioral and brain sciences》1997,20(4):537-56; discussion 556-96
How do minds emerge from developing brains? According to "neural constructivism," the representational features of cortex are built from the dynamic interaction between neural growth mechanisms and environmentally derived neural activity. Contrary to popular selectionist models that emphasize regressive mechanisms, the neurobiological evidence suggests that this growth is a progressive increase in the representational properties of cortex. The interaction between the environment and neural growth results in a flexible type of learning: "constructive learning" minimizes the need for prespecification in accordance with recent neurobiological evidence that the developing cerebral cortex is largely free of domain-specific structure. Instead, the representational properties of cortex are built by the nature of the problem domain confronting it. This uniquely powerful and general learning strategy undermines the central assumption of classical learnability theory, that the learning properties of a system can be deduced from a fixed computational architecture. Neural constructivism suggests that the evolutionary emergence of neocortex in mammals is a progression toward more flexible representational structures, in contrast to the popular view of cortical evolution as an increase in innate, specialized circuits. Human cortical postnatal development is also more extensive and protracted than generally supposed, suggesting that cortex has evolved so as to maximize the capacity of environmental structure to shape its structure and function through constructive learning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号