首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Crossover by Line Length and Spatial Location   总被引:2,自引:0,他引:2  
It is well known that line length has a systematic influence on line bisection error in neglect. Most patients with neglect misbisect long lines on the same side of true center as their brain lesion but then cross over on short lines, misbisecting them on the opposite side (i.e., crossover by line length). What is less recognized is that the spatial location of lines relative to the viewer can similarly induce a crossover effect when one considers line bisection error scores that have been averaged across individual line lengths. Patients with right hemisphere injury and neglect classically make averaged line bisection errors that fall right of true center on lines located either at midline or to the left of the viewer; however, we observed that the averaged line bisection error can fall left of true center when lines are located to the right of the viewer (i.e., crossover by spatial location). We hypothesized that crossover by both line length and spatial location stem from systematic errors in magnitude estimation, i.e., perceived line length. We tested predictions based on this hypothesis by examining how the crossover effect by line length is altered by the spatial location of lines along a horizontal axis relative to the viewer. Participants included patients with unilateral lesions of the right and left cerebral hemispheres and age-appropriate normal subjects. All groups demonstrated a crossover effect by line length at the midline location but the effect was altered by placing lines to the right and left of the viewer. In particular, patients with right hemisphere injury and neglect crossed-over across a broader range of line lengths when the lines were located to the right of the viewer rather than at either midline or left of the viewer. It is proposed that mental representations of stimulus magnitude are altered in neglect, in addition to mental representations of space, and that traditional accounts of neglect can be enhanced by including the psychophysical concept of magnitude estimation.  相似文献   

2.
One possible pathological mechanism underlying the rightward bisection error of right‐brain‐damaged patients with left spatial neglect is a leftward relaxation of the spatial representational medium. This view was originally based on the finding that patients with left neglect, required to extend horizontal segments, in order to double their original length, may exhibit a relative left overextension of the drawn lines ( Bisiach et al., 1994 ). We investigated this putative distortion of representational space using a 16 cm ‘line segmentation’ task (Experiment 1). Were the representation of space relaxed contralesionally, a progressive increase from right to left of the size of the drawn segments would be expected. Right‐brain‐damaged patients with left unilateral neglect (N=12) performed the segmentation task with no left versus right differences, as right‐brain‐damaged patients without neglect (N=8), and neurologically unimpaired control subjects (N=10), did. Experiments 2 and 3 explored the effects of sample length (1, 2, 4, and 8 cm), by which the 16 cm lines had to be segmented. Neglect patients produced longer left‐sided segments only for the 8 cm sample (i.e. half of the length of the segment). This set of experiments suggests an impairment in the segmentation task only with the larger (8 cm) sample, when a more global level of processing may be involved. Experiment 4 assessed this hypothesis by a ‘part/whole’ bisection task, using 8 cm lines, presented either embedded in a longer 16 cm line or in isolation. Neglect patients made a larger rightward bisection error when the segment was not embedded. The suggestion is made that the lateral distortion of the representation of space in neglect patients (i.e. a leftward relaxation of the spatial medium) concerns tasks where a more ‘global’ representation of the visual stimulus has to be set up. The different demands of the segmentation and bisection tasks are discussed.  相似文献   

3.
Patients with unilateral neglect of the left side bisect physical lines to the right whereas individuals with an intact brain bisect lines slightly to the left (pseudoneglect). Similarly, for mental number lines, which are arranged in a left-to-right ascending sequence, neglect patients bisect to the right. This study determined whether individuals with an intact brain show pseudoneglect for mental number lines. In Experiment 1, participants were presented with visual number triplets (e.g., 16, 36, 55) and determined whether the numerical distance was greater on the left or right side of the inner number. Despite changing the spatial configuration of the stimuli, or their temporal order, the numerical length on the left was consistently overestimated. The fact that the bias was unaffected by physical stimulus changes demonstrates that the bias is based on a mental representation. The leftward bias was also observed for sets of negative numbers (Experiment 2)—demonstrating not only that the number line extends into negative space but also that the bias is not the result of an arithmetic distortion caused by logarithmic scaling. The leftward bias could be caused by a rounding-down effect. Using numbers that were prone to large or small rounding-down errors, Experiment 3 showed no effect of rounding down. The task demands were changed in Experiment 4 so that participants determined whether the inner number was the true arithmetic centre or not. Participants mistook inner numbers shifted to the left to be the true numerical centre—reflecting leftward overestimation. The task was applied to 3 patients with right parietal damage with severe, moderate, or no spatial neglect (Experiment 5). A rightward bias was observed, which depended on the severity of neglect symptoms. Together, the data demonstrate a reliable and robust leftward bias for mental number line bisection, which reverses in clinical neglect. The bias mirrors pseudoneglect for physical lines and most likely reflects an expansion of the space occupied by lower numbers on the left side of the line and a contraction of space for higher numbers located on the right.  相似文献   

4.
Patients with unilateral neglect of the left side bisect physical lines to the right whereas individuals with an intact brain bisect lines slightly to the left (pseudoneglect). Similarly, for mental number lines, which are arranged in a left-to-right ascending sequence, neglect patients bisect to the right. This study determined whether individuals with an intact brain show pseudoneglect for mental number lines. In Experiment 1, participants were presented with visual number triplets (e.g., 16, 36, 55) and determined whether the numerical distance was greater on the left or right side of the inner number. Despite changing the spatial configuration of the stimuli, or their temporal order, the numerical length on the left was consistently overestimated. The fact that the bias was unaffected by physical stimulus changes demonstrates that the bias is based on a mental representation. The leftward bias was also observed for sets of negative numbers (Experiment 2)--demonstrating not only that the number line extends into negative space but also that the bias is not the result of an arithmetic distortion caused by logarithmic scaling. The leftward bias could be caused by a rounding-down effect. Using numbers that were prone to large or small rounding-down errors, Experiment 3 showed no effect of rounding down. The task demands were changed in Experiment 4 so that participants determined whether the inner number was the true arithmetic centre or not. Participants mistook inner numbers shifted to the left to be the true numerical centre--reflecting leftward overestimation. The task was applied to 3 patients with right parietal damage with severe, moderate, or no spatial neglect (Experiment 5). A rightward bias was observed, which depended on the severity of neglect symptoms. Together, the data demonstrate a reliable and robust leftward bias for mental number line bisection, which reverses in clinical neglect. The bias mirrors pseudoneglect for physical lines and most likely reflects an expansion of the space occupied by lower numbers on the left side of the line and a contraction of space for higher numbers located on the right.  相似文献   

5.
The aim of this study was to assess whether perceptual representation along the horizontal axis is affected by hemispace position of the stimulus or by orienting attention to one side. Ten control subjects and 10 right brain damaged patients with left unilateral spatial neglect (USN) were asked to bisect lines of five lengths in three space positions (left, center, right) and under three cueing conditions (no cue, left cue, right cue). Normal controls showed significant displacement of bisection opposite to the side of hemispace presentation and toward the side of cueing. USN patients showed a bisection error toward the right end which increased with lines placed in the left hemispace and decreased with lines placed in the right hemispace and when attention was oriented toward the left side. We conclude that (1) In absence of cues normal subjects tend to overestimate the portions of space closer to their body midline; (2) both normal and USN patients tend to overestimate portions of space that they direct their attention to; (3) USN patients' performance without cueing is consistent with an attentional shift toward the right hemispace implying a gradient of overestimation of the right-most portions of space. A common neural substratum for directing attention and space representation can explain these findings.  相似文献   

6.
We intended to determine if leftward error of line bisection means "right" or "left" neglect in a patient with left unilateral spatial neglect. The patient placed the subjective midpoint to the left of the true center when bisecting lines without cueing. By contrast, when cued to the left endpoint, he showed typical rightward errors that became greater as longer lines were presented. Cueing to the right endpoint increased leftward errors compared with the bisections without cueing. The results suggest that paradoxical leftward error of line bisection is a form of "left" unilateral spatial neglect in that the shortness of the left extent is ignored.  相似文献   

7.
The background page on which a stimulus is presented can influence the allocation of attention to that stimulus. The purpose of this study was to learn if there are hemispheric asymmetries in how background distraction affects attentional processing. Asymmetries were investigated by having right eye dominant subjects perform line bisections and manipulating the side of background distraction (right versus left), the eye of regard (right versus left), and the type of attention allocated (focal versus global). Overall subjects bisected lines to the left of center (pseudoneglect) and when viewing with the right eye (versus left) deviated more to the left. Subjects had more background distraction when viewing symbol than solid lines. Although overall, bias did not differ with the side of background distraction or the line being on one side or the other, when subjects viewed symbol, but not solid lines, this leftward bias was increased when the line was displaced to the right, thereby increasing the size of the left sided background. These findings suggest that when engaging the left hemisphere by using focused attention and placing the line on the right side, there is more distraction than when the right hemisphere is engaged.  相似文献   

8.
Toth C  Kirk A 《Brain and cognition》2002,50(2):167-177
Normal subjects may have both representational and visual-based components determining bias in bisection of horizontal, vertical, and radial lines. The influence of these components is less clear in patients with neglect. We asked 25 patients with right hemisphere stroke and clinical features of neglect to bisect lines oriented horizontally, vertically, and radially above and below eye level. Objects including human silhouette figures, arrowheads, and the words 'TOP' and 'BOTTOM' were placed at either end of each line. These figures were presented either upright or upside down in some orientations, and presented rightward and leftward in other orientations, to pictorially or semantically define a "top" to each line independent of the actual top of the visual field. Patients demonstrated a rightward bias on all horizontal line bisections, with similar bias and greater magnitude than normal subjects. Patients also demonstrated visual-based biases on some of the vertical, radial down, and radial up lines presented. However, patients did not demonstrate a significant representational bias with any of the visual cues presented on any of the line orientations. Patients with acute right hemisphere stroke demonstrate a rightward bias when asked to perform line bisection in the horizontal line orientation, as well as an upward bias in vertical line bisection. The lack of representational bias in patients with neglect may be due to a greater degree of visual-based neglect as compared to representational neglect, or it may be due to an absence of representational bias in patients with right hemisphere stroke.  相似文献   

9.
In the present study, we showed that a representational disorder for words can dissociate from both representational neglect for objects and neglect dyslexia. This study involved 14 brain-damaged patients with left unilateral spatial neglect and a group of normal subjects. Patients were divided into four groups based on presence of left neglect dyslexia and representational neglect for non-verbal material, as evaluated by the Clock Drawing test. The patients were presented with bisection tasks for words and lines. The word bisection tasks (with words of five and seven letters) comprised the following: (1) representational bisection: the experimenter pronounced a word and then asked the patient to name the letter in the middle position; (2) visual bisection: same as (1) with stimuli presented visually; and (3) motor bisection: the patient was asked to cross out the letter in the middle position. The standard line bisection task was presented using lines of different length. Consistent with the literature, long lines were bisected to the right and short lines, rendered comparable in length to the words of the word bisection test, deviated to the left (crossover effect). Both patients and controls showed the same leftward bias on words in the visual and motor bisection conditions. A significant difference emerged between the groups only in the case of the representational bisection task, whereas the group exhibiting neglect dyslexia associated with representational neglect for objects showed a significant rightward bias, while the other three patient groups and the controls showed a leftward bisection bias. Neither the presence of neglect alone nor the presence of visual neglect dyslexia was sufficient to produce a specific disorder in mental imagery. These results demonstrate a specific representational neglect for words independent of both representational neglect and neglect dyslexia.  相似文献   

10.
How do stimulus size and item number relate to the magnitude and direction of error on center estimation and line cancellation tests? How might this relationship inform theories concerning spatial neglect? These questions were addressed by testing twenty patients with right hemisphere lesions, eleven with left hemisphere lesions and eleven normal control subjects on multiple versions of center estimation and line cancellation tests. Patients who made large errors on these tests also demonstrated an optimal or pivotal stimulus value, i.e., a particular size center estimation test or number of lines on cancellation that either minimized error magnitude relative to other size stimuli (optimal) or marked the boundary between normal and abnormal performance (pivotal). Patients with right hemisphere lesions made increasingly greater errors on the center estimation test as stimuli were both larger and smaller than the optimal value, whereas those with left hemisphere lesions made greater errors as stimuli were smaller than a pivotal value. In normal subjects, the direction of errors on center estimation stimuli shifted from the right of true center to the left as stimuli decreased in size (i.e., the crossover effect). Right hemisphere lesions exaggerated this effect, whereas left hemisphere lesions diminished and possibly reversed the direction of crossover. Error direction did not change as a function of stimulus value on cancellation tests. The demonstration of optimal and pivotal stimulus values indicates that performances on center estimation and cancellation tests in neglect are only relative to the stimuli used. In light of other studies, our findings indicate that patients with spatial neglect grossly overestimate the size of small stimuli and underestimate the size of large stimuli, that crossover represents an “apparent” shift in error direction that actually results from normally occurring errors in size perception, and that the left hemisphere is specialized for one aspect of size estimation, whereas the right performs dual roles.  相似文献   

11.
This study explored the mechanisms that underlie asymmetries for the horizontal vertical illusion (HVI), which deceives length perception, so that a vertical line is perceived as longer than a horizontal line of equivalent length. In Experiment 1, university students (n = 14) made length judgements for vertical and horizontal lines. The vertical line was shifted in eight steps from the far left of the horizontal line (⌊) to the far right (⌋). An HVI was observed for the medial positions (⊥), which diminished towards the lateral positions. The HVI was also stronger when the vertical line was on the left. Because the left/right asymmetry changed as a function of lateral/medial position, the asymmetry within the HVI stimulus is most likely the result of pseudoneglect, which affects judgements of horizontal length. In Experiment 2, participants (n = 15) made judgements for HVI stimuli presented to the left- and right-hemispace and the midline. The HVI was stronger in the left hemispace. Because the asymmetry between the left- and right-hemispaces did not interact with the asymmetry within the stimuli, it was concluded that the asymmetry between hemispatial positions was the result of right hemisphere susceptibility to illusory geometrical effects whereas the asymmetry within the stimulus is related to an object-centred attentional asymmetry. The HVI is affected by asymmetries in length judgements and susceptibility to illusions and may provide interesting insights into attentional disorders in clinical populations, such as neglect.  相似文献   

12.
Three patients with unilateral spatial neglect could detect the difference of length between the right and left segments when a line had a transection mark. To examine the effect of response mode, the manual line bisection task and a new “line bisection task by fixation” were given to the patients. In tasks that used lines with no landmark, they showed apparent rightward errors. The results suggest that line bisection is not a task that examines the ability of patients with neglect to compare the right and left extents of a line. Where to fixate as the subjective midpoint may determine the rightward errors of bisection, whether manual response is used or not.  相似文献   

13.
The bisection of lines positioned radially (with the two ends of the line close and far, with respect to the participant's body) has been less investigated than that of lines placed horizontally (with their two ends left and right, with respect to the body's midsagittal plane). In horizontal bisection, patients with left neglect typically show a rightward bias for both lines and words, greater with longer stimuli. As for radial bisection, available data indicate that neurologically unimpaired participants make a distal error, while results from right‐brain‐damaged patients with left spatial neglect are contradictory. We investigated the bisection of radially oriented words, with the prediction that, during bisection, linguistic material would be recoded to its canonical left‐to‐right format in reading, with the performance of neglect patients being similar to that for horizontal words. Thirteen right‐brain‐damaged patients (seven with left spatial neglect) and fourteen healthy controls were asked to manually bisect 40 radial and 40 horizontal words (5–10 letters), and 80 lines, 40 radial and 40 horizontal, of comparable length. Right‐brain‐damaged patients with spatial neglect exhibited a proximal bias in the bisection of short radial words, with the proximal part corresponding to the final right part of horizontally oriented words. This proximal error was not found in patients without neglect and healthy controls. For bisection, short radial words may be recoded to the canonical orthographic horizontal format, unveiling the impact of left neglect on radially oriented stimuli.  相似文献   

14.
Previous studies have shown that left neglect patients are impaired when they have to orient their attention leftward relative to a standard in numerical comparison tasks. This finding has been accounted for by the idea that numerical magnitudes are represented along a spatial continuum oriented from left to right with small magnitudes on the left and large magnitudes on the right. Similarly, it has been proposed that duration could be represented along a mental time line that shares the properties of the number continuum. By comparing directly duration and numerosity processing, this study investigates whether or not the performance of neglect patients supports the hypothesis of a mental time line. Twenty‐two right brain‐damaged patients (11 with and 11 without left neglect), as well as 11 age‐matched healthy controls, had to judge whether a single dot presented visually lasted shorter or longer than 500 ms and whether a sequence of flashed dots was smaller or larger than 5. Digit spans were also assessed to measure verbal working memory capacities. In duration comparison, no spatial‐duration bias was found in neglect patients. Moreover, a significant correlation between verbal working memory and duration performance was observed in right brain‐damaged patients, irrespective of the presence or absence of neglect. In numerical comparison, only neglect patients showed an enhanced distance effect for numerical magnitude smaller than the standard. These results do not support the hypothesis of the existence of a mental continuum oriented from left to right for duration. We discuss an alternative account to explain the duration impairment observed in right brain‐damaged patients.  相似文献   

15.
Patients with right unilateral cerebral stroke, four of which showed acute hemispatial neglect, and healthy aged-matched controls were tested for their ability to grasp objects located in either right or left space at near or far distances. Reaches were performed either in free vision or without visual feedback from the hand or target object. It was found that the patient group showed normal grasp kinematics with respect to maximum grip aperture, grip orientation, and the time taken to reach the maximum grip aperture. Analysis of hand path curvature showed that control subjects produced straighter right hand reaches when vision was available compared to when it was not. The right hemisphere lesioned patients, however, showed similar levels of curvature in each of these conditions. No behavioural differences, though, could be found between right hemisphere lesioned patients with or without hemispatial neglect on either grasp parameters, path deviation or temporal kinematics.  相似文献   

16.
Patients showing visual extinction as a consequence of a unilateral brain lesion can correctly detect a single stimulus in either hemifield but fail to detect the contralesional stimulus (or at least process the stimulus less efficiently) when it is presented simultaneously with an ipsilesional stimulus. In an attempt to uncover the nature of the underlying deficit, some studies have manipulated the temporal characteristics of stimulus presentation. Contra- and ipsilesional stimuli with different stimulus onset asynchronies are typically used. In the present study, visual extinction was investigated in a group of left neglect patients (N=10) using a psychophysical paradigm with different stimulus onset asynchronies of target and distractor stimuli presented in different hemifields. Contrast thresholds for a target grating were determined with the target either in isolation or in the presence of an irrelevant distractor grating. When target and distractor gratings were presented simultaneously, neglect patients showed a significant extinction effect, i.e., a significant interference from the right hemifield distractor with left hemifield contrast sensitivity. When the right hemifield distractor preceded the left hemifield target stimulus by 250 ms, two different patterns of results were observed in the neglect patients. Five patients showed a significant improvement compared to the simultaneous presentation condition, five other patients showed a significant increase of the extinction effect. The results suggest that different underlying mechanisms, maybe due to different lesion locations, can cause extinction in neglect patients.  相似文献   

17.
Highly variable bisection performance in neglect patients has been attributed to an increased 'zone of indifference'. The indifference zone indicates the discrepancy between two line lengths which are judged as equal in length. Following this argumentation, the central area of a line should be expanded in neglect patients. The present two experiments investigated for the first time the expansion of the central area using a modified version of the Landmark Task. The location of a central or asymmetrical bisection mark on a horizontal line had to be judged (centre/left/right). In both experiments neglect patients, unlike healthy and patient controls, showed clear deficits in judging the location of the mark correctly and tended to judge asymmetrical marks of up to 4 cm as centrally positioned. The results are in agreement with and provide the first clear evidence of an enlarged perceptual zone of indifference in patients with hemispatial visual neglect.  相似文献   

18.
Patients with left unilateral spatial neglect (USN) typically place the subjective midpoint to the right of the objective centre. Based on the previous findings (e.g., Ishiai et al. 1989, Brain, 112, 1485), we hypothesized that the patients with left USN may see the representational image of a line that extends equally towards either side of the subjective midpoint depending not upon the information about the leftward extent. The present study tested whether patients with left USN would place the subjective midpoint at the centre of their mental representation of the line. The participants were 10 patients with left USN and 10 neurologically healthy controls. We devised a new ‘endpoint reproduction task’ using a computer display with a touch panel to seek the representational image when patients with left USN bisect lines and asked the participants to reproduce the location of the right or left endpoint after bisecting lines. The results showed that the representational image of the bisected line depends primarily on the location of the objective right endpoint, not on the location of the objective left endpoint in space. The analyses of the estimated right and left representational extents confirmed our hypotheses that patients with left USN would bisect a line seeing the representational line image that centred across their subjective midpoint. We believe that the findings of the present study with the use of the endpoint reproduction task will contribute to a better understanding of the visuospatial process underlying line bisection of patients with left USN.  相似文献   

19.
Subjects were presented with either verbal (letters) or nonverbal (outline forms) stimuli to their left or right cerebral hemispheres. Verbal items presented with a lateral masking stimulus were identified more quickly and accurately when presented to the right hemisphere rather than to the left. When the letters were presented without a masking stimulus, weak hemispheric effects were obtained. Nonverbal forms demonstrated faster reaction time and fewer errors for right-hemisphere presentations under both masked and unmasked conditions. Retinal locus of the display item was also varied and produced faster responding with fewer errors when the stimulus was presented foveally rather than peripherally under all display conditions. These effects were attributed to the use of a manual response procedure that effectively reduced the ability of subjects to employ names for the stimulus objects.  相似文献   

20.
Two pairs of experiments studied the effects of attention and of unilateral neglect on auditory streaming. The first pair showed that the build up of auditory streaming in normal participants is greatly reduced or absent when they attend to a competing task in the contralateral ear. It was concluded that the effective build up of streaming depends on attention. The second pair showed that patients with an attentional deficit toward the left side of space (unilateral neglect) show less stream segregation of tone sequences presented to their left than to their right ears. Streaming in their right ears was similar to that for stimuli presented to either ear of healthy and of brain-damaged controls, who showed no across-ear asymmetry. This result is consistent with an effect of attention on streaming, constrains the neural sites involved, and reveals a qualitative difference between the perception of left- and right-sided sounds by neglect patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号