首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Visually induced self-translation is called linear vection, while visually induced self-rotation is called circular vection. Impressions of circular vection and linear vection were measured using flow patterns presented on a flat screen. Subjects reported strong circular vection when the flow simulated a projected pattern of a rotating cylinder, which had gradients in speed and direction of moving elements on the screen. When speed gradients in a horizontal dimension were removed while not changing the direction distribution on the screen, strong circular vection was still reported. On the other hand, when the motion direction of all elements was the same (horizontal), having speed gradients, the circular vection was weak. The impression of linear vection showed the opposite trend. This result indicates not a speed distribution pattern but one of a two-dimensional direction on the retina determines the type of vection.  相似文献   

2.
I P Howard  T Heckmann 《Perception》1989,18(5):657-665
In studies where it is reported that illusory self-rotation (circular vection) is induced more by peripheral displays than by central displays, eccentricity may have been confounded with perceived relative distance and area. Experiments are reported in which the direction and magnitude of vection induced by a central display in the presence of a surround display were measured. The displays varied in relative distance and area and were presented in isolation, with one moving and one stationary display, or with both moving in opposite directions. A more distant display had more influence over vection than a near display. A central display induced vection if seen in isolation or through a 'window' in a stationary surrounding display. Motion of a more distant central display weakened vection induced by a nearer surrounding display moving the other way. When the two displays had the same area their effects almost cancelled. A moving central display nearer than a textured stationary surround produced vection in the same direction as the moving stimulus. This phenomenon is termed 'contrast-motion vecton' because it is probably due to illusory motion of the surround induced by motion of the centre. Unequivocal statements about the dominance of an eccentric display over a central display cannot be made without considering the relative distances and sizes of the displays and the motion contrast between them.  相似文献   

3.
Kitazaki M  Sato T 《Perception》2003,32(4):475-484
Attentional effects on self-motion perception (vection) were examined by using a large display in which vertical stripes containing upward or downward moving dots were interleaved to balance the total motion energy for the two directions. The dots moving in the same direction had the same colour, and subjects were asked to attend to one of the two colours. Vection was perceived in the direction opposite to that of non-attended motion. This indicates that non-attended visual motion dominates vection. The attentional effect was then compared with effects of relative depth. Clear attentional effects were again found when there was no relative depth between dots moving in opposite directions, but the effect of depth was much stronger for stimuli with a relative depth. Vection was mainly determined by motion in the far depth plane, although some attentional effects were evident even in this case. These results indicate that attentional modulation for vection exists, but that it is overridden when there is a relative depth between the two motion components.  相似文献   

4.
Visually induced self-motion (vection) affects the speed at which actions are performed.However, it has been unclear whether this speedy action induced by vection is based on the modulation of mental tempo. To clarify this issue, we tested whether the speed of vection influenced an observer's cyclic action related to mental tempo. Observers viewed fast and slow moving optic flow stimuli and dynamic random dots, whilst handclapping at their preferred tempo. The results revealed that the clapping rate was the fastest in the fastest optic flow condition. This effect vanished when optic flow stimuli moved fast but did not induce vection. Fast optic flow stimuli also induced larger pupil dilation, suggesting that it increased the observer's arousal level. These results suggest that illusory self-motion increased arousal levels, thereby modulating mental tempo.  相似文献   

5.
The effects of the size of a stimulus and its eccentricity (central or peripheral) on the visually induced perception of horizontal translational self-motion (vection) were investigated. The central and peripheral areas of the observers' visual field were simultaneously stimulated by random dot patterns that moved in opposite directions. The results of two experiments indicated that the effects of central and peripheral presentations of the moving visual pattern are equivalent, and that vection strength is determined by the stimulus size and speed but not by its eccentricity. These results are consistent with the findings of previous studies that suggested that there are no qualitative differences in the vection-inducing potentials of the central and peripheral areas of the visual field, and are counter to the more traditional hypothesis, which has assumed that the perception of self-motion is specifically assigned to peripheral vision.  相似文献   

6.
Nakamura S  Seno T  Ito H  Sunaga S 《Perception》2010,39(12):1579-1590
The effects of dynamic colour modulation on vection were investigated to examine whether perceived variation of illumination affects self-motion perception. Participants observed expanding optic flow which simulated their forward self-motion. Onset latency, accumulated duration, and estimated magnitude of the self-motion were measured as indices of vection strength. Colour of the dots in the visual stimulus was modulated between white and red (experiment 1), white and grey (experiment 2), and grey and red (experiment 3). The results indicated that coherent colour oscillation in the visual stimulus significantly suppressed the strength of vection, whereas incoherent or static colour modulation did not affect vection. There was no effect of the types of the colour modulation; both achromatic and chromatic modulations turned out to be effective in inhibiting self-motion perception. Moreover, in a situation where the simulated direction of a spotlight was manipulated dynamically, vection strength was also suppressed (experiment 4). These results suggest that observer's perception of illumination is critical for self-motion perception, and rapid variation of perceived illumination would impair the reliabilities of visual information in determining self-motion.  相似文献   

7.
R B Post 《Perception》1988,17(6):737-744
The sensation of self-rotation induced by viewing a surround rotating about the observer's vertical axis (circular vection or CV) was investigated with equal-area stimuli located in either the central, the mid-peripheral, or the far-peripheral visual field. Magnitude estimation responses indicated greater CV with larger stimulus area, but no significant differences in CV sensations as a function of stimulus eccentricity. This pattern of results does not support the belief that CV is dominated by peripheral stimulation when equal-area stimuli are compared.  相似文献   

8.
Previous vection research has tended to minimise visual-vestibular conflict by using optic-flow patterns which simulate self-motions of constant velocity. Here, experiments are reported on the effect of adding 'global-perspective jitter' to these displays--simulating forward motion of the observer on a platform oscillating in horizontal and/or vertical dimensions. Unlike non-jittering displays, jittering displays produced a situation of sustained visual-vestibular conflict. Contrary to the prevailing notion that visual-vestibular conflict impairs vection, jittering optic flow was found to produce shorter vection onsets and longer vection durations than non-jittering optic flow for all of jitter magnitudes and temporal frequencies examined. On the basis of these findings, it would appear that purely radial patterns of optic flow are not the optimal inducing stimuli for vection. Rather, flow patterns which contain both regular and random-oscillating components appear to produce the most compelling subjective experiences of self-motion.  相似文献   

9.
M Ohmi  I P Howard 《Perception》1988,17(1):5-11
It has previously been shown that when a moving and a stationary display are superimposed, illusory self-rotation (circular vection) is induced only when the moving display appears as the background. Three experiments are reported on the extent to which illusory forward self-motion (forward vection) induced by a looming display is inhibited by a superimposed stationary display as a function of the size and location of the stationary display and of the depth between the stationary and looming displays. Results showed that forward vection was controlled by the display that was perceived as the background, and background stationary displays suppressed forward vection by about the same amount whatever their size and eccentricity. Also, the perception of foreground-background properties of competing displays determined which controlled forward vection, and this control was not tied to specific depth cues. The inhibitory effect of a stationary background on forward vection was, however, weaker than that found with circular vection. This difference makes sense because, for forward body motion, the image of a distant scene is virtually stationary whereas, when the body rotates, it is not.  相似文献   

10.
We investigated the effects of colors on vection induction. Expanding optical flows during one’s forward self-motion were simulated by moving dots. The dots and the background were painted in equiluminant red and green. Experiments 1 and 2 showed that vection was weaker when the background was red than when the background was green. In addition, Experiment 3 showed that vection was weaker when the moving dots were red than when the dots were green. Experiment 4 demonstrated that red dots on a red background induced very weak vection, as compared with green dots on a green background. In Experiments 5 and 6, we showed that the present results could not be explained by a luminance artifact. Furthermore, Experiment 7 showed that a moving red grating induced weaker vection than did a green one. We concluded that a red visual stimulus inhibits vection.  相似文献   

11.
The present paper reports three investigations of new kinetic information for transparent depth using computer-generated dot patterns. An initial demonstration showed that separation in depth could be obtained by translating rectangular lattices of dots through one another like intersecting columns of marching soldiers. The first two experiments showed that diagonal interactions between lattices created significantly stronger separation than did horizontal or vertical interactions (horizontal was, in turn, stronger than vertical) and that patterns which translated through one another without any of the individual elements intersecting were better separated than those whose rows or columns intersected in register. The third experiment showed that random patterns interacting in any direction created the strongest separations of all the patterns observed. Results were taken to indicate that a unified theory of depth information, developed in the context of James Gibson’s ecological optics, must incorporate both spatial and kinetic structure in its specification of necessary and sufficient stimulus conditions.  相似文献   

12.
In this study, we examined the effects of different gaze types (stationary fixation, directed looking, or gaze shifting) and gaze eccentricities (central or peripheral) on the vection induced by jittering, oscillating, and purely radial optic flow. Contrary to proposals of eccentricity independence for vection (e.g., Post, 1988), we found that peripheral directed looking improved vection and peripheral stationary fixation impaired vection induced by purely radial flow (relative to central gaze). Adding simulated horizontal or vertical viewpoint oscillation to radial flow always improved vection, irrespective of whether instructions were to fixate, or look at, the center or periphery of the self-motion display. However, adding simulated high-frequency horizontal or vertical viewpoint jitter was found to increase vection only when central gaze was maintained. In a second experiment, we showed that alternating gaze between the center and periphery of the display also improved vection (relative to stable central gaze), with greater benefits observed for purely radial flow than for horizontally or vertically oscillating radial flow. These results suggest that retinal slip plays an important role in determining the time course and strength of vection. We conclude that how and where one looks in a self-motion display can significantly alter vection by changing the degree of retinal slip.  相似文献   

13.
Illusory self-motion (vection) is thought to be determined by motion in the peripheral visual field, whereas stimulation of more central retinal areas results in object-motion perception. Recent data suggest that vection can be produced by stimulation of the central visual field provided it is configured as a more distant surface. In this study vection strength (tracking speed, onset latency, and the percentage of trials where vection was experienced) and the direction of self-motion produced by displays moving in the central visual field were investigated. Apparent depth, introduced by using kinetic occlusion information, influenced vection strength. Central displays perceived to be in the background elicited stronger vection than identical displays appearing in the foreground. Further, increasing the eccentricity of these displays from the central retina diminished vection strength. If the central and peripheral displays were moved in opposite directions, vection strength was unaffected, and the direction of vection was determined by motion of the central display on almost half of the trials when the centre was far. Near centres produced fewer centre-consistent responses. A complete understanding of linear vection requires that factors such as display size, retinal locus, and apparent depth plane are considered.  相似文献   

14.
Accelerating self-motion displays produce more compelling vection in depth   总被引:1,自引:0,他引:1  
We examined the vection in depth induced when simulated random self-accelerations (jitter) and periodic self-accelerations (oscillation) were added to radial expanding optic flow (simulating constant-velocity forward self-motion). Contrary to the predictions of sensory-conflict theory frontal-plane jitter and oscillation were both found to significantly decrease the onsets and increase the speeds of vection in depth. Depth jitter and oscillation had lesser, but still significant, effects on the speed of vection in depth. A control experiment demonstrated that adding global perspective motion which simulated a constant-velocity frontal-plane self-motion had no significant effect on vection in depth induced by the radial component of the optic flow. These results are incompatible with the notion that constant-velocity displays produce optimal vection. Rather, they indicate that displays simulating self-acceleration can often produce more compelling experiences of self-motion in depth.  相似文献   

15.
Slowly moving foreground induces an illusory self-motion perception in the same direction as its motion direction (inverted vection). In this study, the effects of motion type of the foreground stimulus on inverted vection were investigated using a sample of 3 men and 1 woman. As indices of perceived strength of the inverted vection, duration and estimated magnitude were measured. Analysis of the psychophysical experiment indicated that a translating foreground induced inverted linear vection in the same direction as the stimulus motion. However, a rotating foreground did not induce an inverted roll vection. Statistical analyses indicate that there is a significant difference between two foreground motion conditions (Duration: t3=14.54, p <.01; Estimation: t3=16.92, p<.01). This result supports the hypothesis that eye-movement information is responsible for the occurrence of inverted vection.  相似文献   

16.
Palmisano et al (2000 Perception 29 57-67) found that adding coherent perspective jitter to constant-velocity radial flow improved visually induced illusions of self-motion (vection). This was a surprising finding, because unlike pure radial flow, this jittering radial flow should have generated sustained visual--vestibular conflicts--previously thought to always reduce/impair vection. We attempted to ascertain the essential stimulus features for this jitter advantage for vection by examining three novel types of jitter display. While adding incoherent jitter to radial flow was found to impair vection, adding coherent non-perspective jitter had little effect on this subjective experience (contrary to the notion that jitter improves vection by reducing adaptation to radial flow). Importantly, we found that coherent perspective jitter not only improves the vection induced by radial flow, but it also appears to induce modest vection by itself (demonstrating that vection can still occur when there is an extreme mismatch between actual and expected vestibular activity). These results suggest that the previously demonstrated advantage for coherent perspective jitter was due (in part at least) to jittering vection combining with forwards vection in depth to produce a more compelling overall vection experience.  相似文献   

17.
Subjects experienced an illusion of self-motion when viewing the randomly patterned inner surface of a cylinder rotating about their main body axis. This sensation of rotation in a direction opposite to the direction of cylinder rotation is known as circular vection. An experiment was conducted to ascertain if the production of circular vection involved a binocular process in the visual system. Using dichoptic strobe illumination, stimuli were created that were identical monocularly but different binocularly. Groups of normal and stereoblind subjects were tested. The presence of purely binocular (cyclopean) stimulation increased the reported magnitude of vection for both groups. We conclude that a binocular process is involved in the production of circular vection and that this process retains its binocularity in stereoblind subjects.  相似文献   

18.
Nakamura S  Shimojo S 《Perception》1999,28(7):893-902
The effects of a foreground stimulus on vection (illusory perception of self-motion induced by a moving background stimulus) were examined in two experiments. The experiments reveal that the presentation of a foreground pattern with a moving background stimulus may affect vection. The foreground stimulus facilitated vection strength when it remained stationary or moved slowly in the opposite direction to that of the background stimulus. On the other hand, there was a strong inhibition of vection when the foreground stimulus moved slowly with, or quickly against, the background. These results suggest that foreground stimuli, as well as background stimuli, play an important role in perceiving self-motion.  相似文献   

19.
It has previously been reported that illusory self-rotation (circular vection) is most effectively induced by the more distant of two moving displays. Experiments are reported in which the relative effectiveness of two superimposed displays in generating circular vection as a function of (i) the separation in depth between them, (ii) their perceived relative distances, and (iii) which display was in the plane of focus was investigated. Circular vection was governed by the motion of the display that was perceived to be the more distant, even when it was actually nearer. However, actual or perceived distance was found to be not the crucial factor in circular vection because even when the distance between the two displays was virtually zero, vection was controlled by the display perceived to be in the background. When the displays were well separated in depth, vection was not affected by whether the near or the far display was in the plane of focus, nor by which display was fixed or pursued by the eyes.  相似文献   

20.
Abstract:  The rotation direction and depth order of a rotating sphere consisting of random dots often reverses while it is viewed under orthographic projection. However, if a short viewing distance is simulated under perspective projection, the correct rotation direction can be perceived. There are two motion cues for the rotation direction and depth order. One is the speed cue; points with higher velocities are closer to the observer. The other is the vertical motion cue; vertical motion is induced when the dots recede from or approach the observer. It was examined whether circular motion, which does not have any depth information but induces vertical velocities, masks the vertical motion cue. In Experiment 1, the effects of circular motion on the judgment of the rotation direction of a rotating sphere were examined. The magnitude of the two cues (the speed cue and the vertical velocity cue) as well as the angular speed of circular motion was varied. It was found that the performance improved as the vertical velocity increased and that the speed cue had slight effects on the judgment of the rotation direction. It was also found that the performance worsened as the angular speed of the circular motion was increased. In Experiment 2, the effects of circular motion on depth judgment of a rotating half sphere were investigated. The performance worsened as the angular speed of the circular motion increased, as in Experiment 1. These results suggest that the visual system cannot compensate perfectly for circular motion for the judgment of the rotation direction and depth order.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号