首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Point-light walkers have been useful to study the contribution of form and motion to biological motion perception by manipulating the lifetime, number, or spatial distribution of the light points. Recent studies have also manipulated the light points themselves, replacing them with small images of objects. This manipulation degraded the recognizability of biological motion, particularly for local images of human bodies. This result suggests an interference of body form information in the local images with the body form analysis necessary for global biological motion recognition at the global level. We further explored this interference with respect to its selectivity for body orientation and motion. Participants had to either discriminate the facing direction (left/right) or the walking direction (forward/backward) of a global walker composed of local stick figures that could face left or right and either stand still or walk forward or backward. Local stick figures interfered stronger with the facing direction task if they were facing in the same direction as the global walker. Walking (forward/backward/static) of the stick figures influenced neither the facing direction task nor the walking direction task. We conclude that the interference is highly specific since it concerns not only the category (human form), but even the facing direction.  相似文献   

2.
GLOBAL PROCESSING OF BIOLOGICAL MOTIONS   总被引:1,自引:0,他引:1  
Abstract— The structure of the human form is quickly and unequivocably recognized from 10 to 13 points of light moving as if attached to the major joints and head of a person walking Recent psychophysical and computational models of this process suggest that these displays are organized by low-level processing constraints that delimit the pair-wise connections of the point lights In the current research, these low-level constraints were rendered uninformative by a masking paradigm The results from four experiments converged to show that the perception of structure in a point-light walker display does not require the prior detection of individual features or local relations  相似文献   

3.
Detection and recognition of point-light walking is reduced when the display is inverted, or turned upside down. This indicates that past experience influences biological motion perception. The effect could be the result of either presenting the human form in a novel orientation or presenting the event of walking in a novel orientation, as the two are confounded in the case of walking on feet. This study teased apart the effects of object and event orientation by examining detection accuracy for upright and inverted displays of a point-light figure walking on his hands. Detection of this walker was greater in the upright display, which had a familiar event orientation and an unfamiliar object orientation, than in the inverted display, which had a familiar object orientation and an unfamiliar event orientation. This finding supports accounts of event perception and recognition that are based on spatiotemporal patterns of motion associated with the dynamics of an event.  相似文献   

4.
Fujimoto K 《Perception》2003,32(10):1273-1277
A new type of motion illusion is described in which ambiguous motion becomes unidirectional on superimposition of a human figure walking on a treadmill. A point-light walker in profile was superimposed on a vertical counterphase grating backdrop. Eleven na?ve observers judged the apparent direction of motion against the grating as left or right in a two-alternative forced-choice task and found that the grating appeared to drift in a direction opposite to the walking. The illusion disappeared when the point lights moved in scrambled configurations. This indicates that the illusion is caused by biological motion that provides recognition of gaits. A human figure walking backwards produced no illusion because of the difficulty in identifying the gait. This indicates that the illusion is determined by translational motion rather than form represented from biological motion.  相似文献   

5.
We addressed the issue of how display orientation affects the perception of biological motion. In Experiment 1, spontaneous recognition of a point-light walker improved abruptly with image-plane display rotation from inverted to upright orientation. Within a range of orientations from 180 degrees to 90 degrees, it was dramatically impeded. Using ROC analysis, we showed (Experiments 2 and 3) that despite prior familiarization with a point-light figure at all orientations, its detectability within a mask decreased with a change in orientation from upright to a range of 90 degrees-180 degrees. In Experiment 4, a priming effect in biological motion was observed only if a prime corresponded to a range of deviations from upright orientation within which the display was spontaneously recognizable. The findings indicate that display orientation nonmonotonically affects the perception of biological motion. Moreover, top-down influence on the perception of biological motion is limited by display orientation.  相似文献   

6.
The visual perception of human movement from sparse point-light walkers is often believed to rely on local motion analysis. We investigated the role of local motion in the perception of human walking, viewed from the side, in different tasks. The motion signal was manipulated by varying point lifetime. We found the task of coherence discrimination, commonly used in biological motion studies, to be inappropriate for testing the role of motion. A task requiring temporal information showed a strong performance drop when fewer points were used or when the image sequence was sampled and displayed at a reduced frame rate. Irrespective of the frame rate, performance did not vary with point lifetime. We concluded that local motion is not required for the perception of tested biological movements, suggesting that the analysis of biological motion does not benefit from examining local motion. The reliance of perception on the number of displayed points and frames supports the idea that biological motion is perceived from a sequence of spatiotemporally sampled forms.  相似文献   

7.
During the perception of biological motion, the available stimulus information is confined to a small number of lights attached to the major joints of a moving actor. Despite this drastic impoverishment of the stimulus, the human visual apparatus organizes the swarm of moving dots in a vivid percept of a human figure. In addition, observers effortlessly identify the action the figure is involved in. After a historical introduction and a short walk through the literature, data from a priming experiment are presented. In a serial two-choice reaction-time task, participants were presented with a point-light walker, facing either to the right or to the left and walking either forward or backward on a treadmill. Subjects had to identify the direction of articulatory movements. Reliable priming effects were established in consecutive trials, but these effects were tempered by the relation between priming and primed walker. The reaction time to a walker was shorter when the walker in the preceding trial moved in the same direction and was facing in the same direction. The findings are discussed in relation to recent data from neuropsychological case studies, neuroimaging, and single-cell recording.  相似文献   

8.
Many studies of cognition and perception use a visual mask to explore the dynamics of information processing of a target. Especially important in these applications is the time between the target and mask stimuli. A plot of some measure of target visibility against stimulus onset asynchrony is called a masking function, which can sometimes be monotonic increasing but other times is U-shaped. Theories of backward masking have long hypothesized that temporal integration of the target and mask influences properties of masking but have not connected the influence of integration with the shape of the masking function. With two experiments that vary the spatial properties of the target and mask, the authors provide evidence that temporal integration of the stimuli plays a critical role in determining the shape of the masking function. The resulting data both challenge current theories of backward masking and indicate what changes to the theories are needed to account for the new data. The authors further discuss the implication of the findings for uses of backward masking to explore other aspects of cognition.  相似文献   

9.
Goodhew SC  Dux PE  Lipp OV  Visser TA 《Cognition》2012,122(3):405-415
When we look at a scene, we are conscious of only a small fraction of the available visual information at any given point in time. This raises profound questions regarding how information is selected, when awareness occurs, and the nature of the mechanisms underlying these processes. One tool that may be used to probe these issues is object-substitution masking (OSM). In OSM, a sparse, temporally-trailing four dot mask can interfere with target perception, even though the target and mask have different contours and do not spatially overlap (Enns & Di Lollo, 1997). Here, we investigate the mechanisms underlying the recently discovered recovery from OSM observed with prolonged mask exposure (Goodhew, Visser, Lipp, & Dux, 2011). In three experiments, we demonstrate that recovery is unaffected by mask offset, and that prolonged physical exposure of the mask is not necessary for recovery. These findings confirm that recovery is not due to: (a) an offset transient impairing the visibility of other stimuli that are nearby in space and time, or (b) mask adaptation or temporal object-individuation cues resulting from prolonged mask exposure. Instead, our results confirm recovery as a high-level visual-cognitive phenomenon, which is inherently tied to target-processing time. This reveals the prolonged iterative temporal dynamics of conscious object perception.  相似文献   

10.
Evidence suggests that intranasally administered oxytocin modulates several social cognitive and emotional processes in humans. In this study, we investigated the effect of oxytocin on the perception of biological motion (a walking character) and nonbiological motion (a rotating shape). The participants were 20 healthy volunteers who observed moving dots embedded among a cloud of noise (mask) dots. Sensitivity (d ) for motion detection was determined after the administration of oxytocin and placebo. The results showed that oxytocin (relative to placebo) administration increased sensitivity to biological motion but not to nonbiological motion. These results suggest that oxytocin specifically modulates the perception of socially relevant stimuli.  相似文献   

11.
Visual stimuli as well as transcranial magnetic stimulation (TMS) can be used: (1) to suppress the visibility of a target and (2) to recover the visibility of a target that has been suppressed by another mask. Both types of stimulation thus provide useful methods for studying the microgenesis of object perception. We first review evidence of similarities between the processes by which a TMS mask and a visual mask can either suppress the visibility of targets or recover such suppressed visibility. However, we then also point out a significant difference that has important implications for the study of the time course of unconscious and conscious visual information processing and for theoretical accounts of the processes involved. We present evidence and arguments showing: (a) that visual masking techniques, by revealing more detailed aspects of target masking and target recovery, support a theoretical approach to visual masking and visual perception that must take into account activities in two separate neural channels or processing streams and, as a corollary, (b) that at the current stage of methodological sophistication visual masks, by acting in more highly specifiable ways on these pathways, provide information about the microgenesis of form perception not available with TMS masks.  相似文献   

12.
Learning to recognize objects appears to depend critically on extended observation of appearance over time. Specifically, temporal association between dissimilar views of an object has been proposed as a tool for learning invariant representations for recognition. We examined heretofore untested aspects of the temporal association hypothesis using a familiar dynamic object, the human body. Specifically, we examined the role of appearance prediction (temporal asymmetry) in temporal association. In our task, observers performed a change detection task using upright and inverted images of a walking body either with or without previous exposure to a motion stimulus depicting an upright walker. Observers who were exposed to the dynamic stimulus were further divided into two groups dependent on whether the observed motion depicted forward or backward walking. We find that the effect of the motion stimulus on sensitivity is highly dependent on whether the observed motion is consistent with past experience.  相似文献   

13.
Recent models have proposed a two-stage process of biological motion recognition. First, template or snapshot neurons estimate the body form. Then, motion is estimated from body form change. This predicts separate aftereffects for body form and body motion. We tested this prediction. Observers viewing leftward- or rightward-facing point-light walkers that walked forward or backward subsequently experienced oppositely directed aftereffects in stimuli ambiguous in the facing or the walking direction. These aftereffects did not originate from adaptation to the motion of the individual light points, because they occurred for limited-lifetime stimuli that restrict local motion. They also occurred when the adaptor displayed a random sequence of body postures that did not induce the walking motion percept. We thus conclude that biological motion gives rise to separate form and motion aftereffects and that body form representations are involved in biological motion perception.  相似文献   

14.
Matsuno T  Tomonaga M 《Perception》2008,37(8):1258-1268
We used the visual-masking paradigm to compare temporal characteristics of chimpanzee vision with those of humans. Two types of masking experiments were conducted. One type involved masking by noise, in which the visibility of the geometric pattern target was tested with a spatially overlapping noise as the mask stimulus. The other type involved paracontrast and metacontrast masking, in which the mask stimuli flanked but did not spatially overlap the target stimuli. Temporal characteristics regarding the visibility of target stimuli, displayed as functions of temporal asynchrony between target and mask stimuli, differed with the mask type in chimpanzees as in humans. Peak deterioration in visibility occurred at the point of minimum temporal asynchrony both in forward and backward masking by noise, but was not at 0 ms temporal asynchrony when the target and mask stimuli did not spatially overlap. These results suggest that chimpanzees and humans share the underlying mechanisms in two kinds of temporal inhibition caused by spatially overlapping and non-overlapping mask stimuli.  相似文献   

15.
It has been reported that the tuning function relating masking of a vertical line to the orientation of a masking line differs in form depending upon whether the mask is presented with the target (simultaneous masking) or before it (forward masking). From such evidence, it might be concluded that different mechanisms are implicated. Lovegrove (1976) suggested that lateral inhibition mediates the simultaneous effect, whereas postexcitatory suppression (adaptation) mediates the successive effect. The six experiments reported here show that apparent motion cues reduce the effectiveness of successive masking when single-line stimuli are used, but that when such motion cues are eliminated, the two tuning functions are similar in form. It is, thus, unnecessary to invoke separate mechanisms in the two cases.  相似文献   

16.
Shi J  Weng X  He S  Jiang Y 《Cognition》2010,117(3):348-354
The human visual system is extremely sensitive to biological signals around us. In the current study, we demonstrate that biological motion walking direction can induce robust reflexive attentional orienting. Following a brief presentation of a central point-light walker walking towards either the left or right direction, observers' performance was significantly better on a target in the walking direction compared with that in the opposite direction even when participants were explicitly told that walking direction was not predictive of target location. Interestingly, the effect disappeared when the walker was shown upside-down. Moreover, the reflexive attentional orienting could be extended to motions of other biological entities but not inanimate objects, and was not due to the viewpoint effect of the point-light figure. Our findings provide strong evidence that biological motion cues can trigger reflexive attentional orienting, and highlight the intrinsic sensitivity of the human visual attention system to biological signals.  相似文献   

17.
J. T. Enns and V. Di Lollo (1997) discovered a new form of visual masking that they labeled object substitution masking (OSM). OSM occurs when 4 dots, presented around a target, trail in the display after target offset. The present study showed that the physical presence of the masking dots after target offset is not necessary for OSM. Instead, the continued presence of a changing high-level representation associated with the target suffices to yield OSM. Apparent motion was used to define such representation. In these experiments, the initial display offset and was followed by a 2nd display where masks appeared at new locations. Only when the spatiotemporal properties of the stimuli on the 2nd display supported the perception of the target moving and turning into the mask was OSM observed.  相似文献   

18.
Ambiguity has long been used as a probe into visual processing. Here, we describe a new dynamic ambiguous figure-the chimeric point-light walker--which we hope will prove to be a useful tool for exploring biological motion. We begin by describing the construction of the stimulus and discussing the compelling finding that, when presented in a mask, observers consistently fail to notice anything odd about the walker, reporting instead that they are watching an unambiguous figure moving either to the left or right. Some observers report that the initial percept fluctuates, moving first to the left, then to the right, or vice versa; others always perceive a constant direction. All observers, when briefly shown the unmasked ambiguous figure, have no difficulty in perceiving the novel motion pattern once the mask is returned. These two findings--the initial report of unambiguous motion and the subsequent 'primed' perception of the ambiguity--are both consistent with an important role for top-down processing in biological motion. We conclude by suggesting several domains within the realm of biological-motion processing where this simple stimulus may prove to be useful.  相似文献   

19.
Biological motion perception is a key component of action perception contributing to social cognition in crucial ways. Contemporary neuroimaging studies show that biological motion is processed differently in the human brain from other types of motion. In particular, the right posterior Superior Temporal Sulcus (rpSTS), an area known for its central role in social perception, has been consistently associated with the perception of biological motion in the mature brain. By contrast, most findings investigating the development of biological motion perception in infancy come from behavioral studies, and far less is known regarding the right STS’ role in processing biological motion.The current study used fNIRS to measure brain activation to biological motion in the rSTS region of 7–8-month-old infants. Infants were presented with two conditions: an approaching coherent motion of a person walking (coherent point-light-walker, PLW); and a spatially scrambled version of this display, where the global configuration of a person walking was disrupted (scrambled PLW).We found a functional activation, i.e., a significant increase in HbO2 concentration in relation to baseline, in the right middle-posterior temporal cortex only when infants viewed the coherent point-light-walker. This activation statistically differed from the scrambled point-light-walker, and no significant activations were found for viewing the scrambled motion.Our study adds evidence pointing to rSTS’ sensitivity to the global human configuration in biological motion processing during infancy. The rSTS seems thus to become functionally specialized in biological motion configuration as early as at 7–8 months of age.  相似文献   

20.
The ability to detect social signals represents a first step to enter our social world. Behavioral evidence has demonstrated that 6‐month‐old infants are able to orient their attention toward the position indicated by walking direction, showing faster orienting responses toward stimuli cued by the direction of motion than toward uncued stimuli. The present study investigated the neural mechanisms underpinning this attentional priming effect by using a spatial cueing paradigm and recording EEG (Geodesic System 128 channels) from 6‐month‐old infants. Infants were presented with a central point‐light walker followed by a single peripheral target. The target appeared randomly at a position either congruent or incongruent with the walking direction of the cue. We examined infants' target‐locked event‐related potential (ERP) responses and we used cortical source analysis to explore which brain regions gave rise to the ERP responses. The P1 component and saccade latencies toward the peripheral target were modulated by the congruency between the walking direction of the cue and the position of the target. Infants' saccade latencies were faster in response to targets appearing at congruent spatial locations. The P1 component was larger in response to congruent than to incongruent targets and a similar congruency effect was found with cortical source analysis in the parahippocampal gyrus and the anterior fusiform gyrus. Overall, these findings suggest that a type of biological motion like the one of a vertebrate walking on the legs can trigger covert orienting of attention in 6‐month‐old infants, enabling enhancement of neural activity related to visual processing of potentially relevant information as well as a facilitation of oculomotor responses to stimuli appearing at the attended location.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号