首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on the observation that bimanual finger tapping movements tend toward mirror symmetry with respect to the body midline, despite the synchronous activation of non-homologous muscles, F. Mechsner, D. Kerzel, G. Knoblich, and W. Prinz (2001) [Perceptual basis of bimanual coordination. Nature, 414, 69-73] suggested that the basis of rhythmic coordination is purely spatial/perceptual in nature, and independent of the neuro-anatomical constraints of the motor system. To investigate this issue further, we employed a four finger tapping task similar to that used by F. Mechsner and G. Knoblich (2004) [Do muscle matter in bimanual coordination? Journal of Experimental Psychology: Human Perception and Performance, 30, 490-503] in which six male participants were required to alternately tap combinations of adjacent pairs of index (I), middle (M) and ring (R) fingers of each hand in time with an auditory metronome. The metronome pace increased continuously from 1 Hz to 3 Hz over the course of a 30-s trial. Each participant performed three blocks of trials in which finger combination for each hand (IM or MR) and mode of coordination (mirror or parallel) were presented in random order. Within each block, the right hand was placed in one of three orientations; prone, neutral and supine. The order of blocks was counterbalanced across the six participants. The left hand maintained a prone position throughout the experiment. On the basis of discrete relative phase analyses between synchronised taps, the time at which the initial mode of coordination was lost was determined for each trial. When the right hand was prone, transitions occurred only from parallel symmetry to mirror symmetry, regardless of finger combination. In contrast, when the right hand was supine, transitions occurred only from mirror symmetry to parallel but no transitions were observed in the opposite direction. In the right hand neutral condition, mirror and parallel symmetry are insufficient to describe the modes of coordination since the hands are oriented orthogonally. When defined anatomically, however, the results in each of the three right hand orientations are consistent. That is, synchronisation of finger tapping is determined by a hierarchy of control of individual fingers based on their intrinsic neuro-mechanical properties rather than on the basis of their spatial orientation.  相似文献   

2.
Studies investigating whether simultaneous bilateral movements can facilitate performance of the impaired limb(s) of stroke patients have returned mixed results. In the present study we compared unilateral limb performance (amplitude, cycle duration) with performance during an interlimb coordination task involving both homologous (both arms, both legs) and non-homologous (one arm, one leg) limbs in stroke participants (n=7) and healthy age-matched controls (n=7). In addition, the effect of on-line augmented visual feedback on interlimb coordination was investigated. Participants performed cyclical flexion-extension movements of the arms and legs in the sagittal plane paced by an auditory metronome (1 Hz). Movement amplitudes were larger and cycle durations shorter during homologous limb coordination than non-homologous coordination. Compared with unilateral movements both groups had reduced movement amplitudes and the stroke group increased cycle duration when interlimb coordination tasks were performed. These effects were most evident during non-homologous (arm and leg) coordination. No evidence of facilitation of the impaired limb(s) was found in any of the interlimb coordination conditions. Augmented visual feedback had minimal effect on the movements of control participants but lead to an increase of cycle duration for stroke participants.  相似文献   

3.
An asymmetry of attention was observed when subjects attempted to perform concurrent, relatively independent tasks with the two hands: right-handed subjects performed very much better on a dual task which required them to follow the beat of a metronome with the left while tapping as quickly as they could with the right than with the converse arrangement. It is suggested that attentional strategies which have evolved to allow guidance of interdependent skilled bimanual activities are also used when subjects attempt to perform relatively independent concurrent bimanual movements, which are not observed in the naturally occurring motor repertoire. Thus, interactions between hand, hand preference and nature of task are an important factor in dual task performance.  相似文献   

4.
The present study was designed to test two predictions from the coupled oscillator model of multifrequency coordination. First, it was predicted that multifrequency tasks that match the inherent manual asymmetry (i.e., the preferred hand assigned to the faster tempo) would be easier to learn than tasks that do not match the inherent dynamics (i.e., the non-preferred hand assigned to the faster tempo). Second, in the latter case acquisition of the multifrequency coordination would involve a reorganisation of the coupling dynamics such that the faster hand would exert a greater influence on the slower hand than vice versa. Sixteen right-handed volunteers received extensive training on a 2:1 coordination pattern involving a bimanual forearm pronation-supination task. Participants were randomly assigned to one of two groups: 1L:2R in which the preferred right hand performed the higher frequency, or 2L:1R in which the non-preferred left hand performed the higher frequency. The dynamic stability of the patterns was assessed by the ability of participants to maintain the coordination pattern as movement frequency was increased. Changes in the directional coupling between the hands was assessed by transition pathways and lead-lag relationship evident in a 1:1 anti-phase frequency-scaled coordination task performed prior to and following three practice sessions of the 2:1 task. The predicted differential stability between the multifrequency patterns was evident in the initial acquisition sessions but by the end of training the two patterns evidenced equivalent stability. Unexpectedly, for both groups the fast hand displayed greater variability in amplitude and movement frequency than the slow hand perhaps reflecting anchoring afforded to the slow hand by synchronising movement endpoints with the auditory pacing metronome. Analysis of pre- to post-training changes to the coupling dynamics in the 1:1 anti-phase task support the hypothesis that acquisition of the 2L:1R pattern involved reorganisation of the inherent dynamics.  相似文献   

5.
Bimanual coordination dynamics in poststroke hemiparetics   总被引:3,自引:0,他引:3  
Poststroke hemiparetic individuals (n = 9) and a control group (n = 9) completed a frequency-scaled circle-drawing task in unimanual and bimanual conditions. Measures of intralimb spatial and temporal task accuracy and interlimb coordination parameters were analyzed. Significant reductions in task performance were seen in both limbs of the patients and controls with the introduction of bimanual movement. Spatial performance parameters suggested that the 2 groups focused on different hands during bimanual conditions. In the controls, interlimb coordination variables indicated predictable hand dominance effects, whereas in the patient group, dominance was influenced by the side of impairment and prior handedness of the individual. Therefore, in this particular bimanual task, performance improvements in the hemiplegic side could not be elicited. Intrinsic coupling asymmetries between the hands can be altered by unilateral motor deficits.  相似文献   

6.
The influence of focal attention on the coordination dynamics in a bimanual circle drawing task was investigated. Six right-handed and seven left-handed subjects performed bimanual circling movements, in two modes of coordination, symmetrical or asymmetrical. The frequency of movement was scaled by an auditory metronome from 1.50 Hz to 3.00 Hz in 7 steps. On each trial, subjects were required to attend either to the dominant hand, to a neutral position, or to the nondominant hand.The uniformity of the relative tangential angle was lower in asymmetrical than in symmetrical conditions, but was not influenced by the direction of attention. In the asymmetrical mode, shifts in RTA relations, suggestive of loss of stability, were evident as the movement frequency was increased. Typically, these shifts were mediated by distortions of the trajectory of the nondominant limb. When the nondominant hand was the focus of attention, movements of this hand were more circular, and temporal variability was reduced, at the cost of a greater deviation from the target frequency. Movements of the dominant hand were not affected by the direction of attention. The findings show that although directed attention acts to modify the coordination dynamics, it does so primarily at the level of the individual hands, rather then in terms of the relation between them.  相似文献   

7.
A bimanual circle drawing task was employed to elucidate the dynamics of intralimb and interlimb coordination. Right-handed subjects were required to produce circles with both hands in either a symmetrical (mirror) mode (i.e. one hand moving clockwise, the other counter-clockwise) or in an asymmetrical mode (i.e. both hands moving clockwise or counter-clockwise). The frequency of movement was scaled by an auditory metronome from 1.50 Hz to 3.25 Hz in8 (8-sec) steps.In the asymmetrical mode,distortions ofthe movement trajectories, transient departures from the target pattern of coordination, and phase wandering were evident as movement frequency was increased. These features suggested loss of stability. Deviations from circular trajectories were most prominent for movements of the left hand. Transient departures from the required mode of coordination were also largely precipitated by the left hand. The results are discussed with reference to manual asymmetries and mechanisms of interlimb and intersegmental coordination.  相似文献   

8.
The number of joint motions available in the upper extremity provides for multiple solutions to the coordination of a motor task. Making use of these abundant joint motions provides for task flexibility. Controlling bimanual movements poses another level of complexity because of possible tradeoffs between coordination within a limb and coordination between the limbs. We examined how flexible patterns of joint coordination were used to stabilize the hand's path when drawing a circle independently compared to a bimanual pattern. Across-trial variance of joint motions was partitioned into two components: goal-equivalent variance (GEV), representing variance of joint motions consistent with a stable hand path and non-goal-equivalent variance (NGEV) representing variance of joint motions that led to deviations of the hand's path. GEV was higher than NGEV in both unimanual and bimanual drawing, with one exception. Both GEV and NGEV, related to control of the individual hands' motion, decreased when engaged in the bimanual compared to unimanual drawing. Moreover, NGEV, leading to variability in the vectorial distance between the hands, was higher when the two hands drew circles in a bimanually asymmetric vs. symmetric pattern, consistent with reported differences in the relative phasing of the two hands. Our results suggest that the nervous system controls the individual hands' motions by separate intra-limb synergies during both unimanual and bimanual drawing, and superimposes an additional synergy to achieve stable relative motion of the two hands during bimanual drawing.  相似文献   

9.
The goal of this experiment was to investigate the role of visual feedback during written composition. Effects of suppression of visual feedback were analyzed both on processing demands and on on‐line coordination of low‐level execution processes and of high‐level conceptual and linguistic processes. Writers composed a text and copied it either with or without visual feedback. Processing demands of the writing processes were evaluated with reaction times to secondary auditory probes, which were analyzed according to whether participants were handwriting (in a composing and a copying task) or engaged in high‐level processes (when pausing in a composing task). Suppression of visual feedback increased reaction time interference (secondary reaction time minus baseline reaction time) during handwriting in the copying task and not during pauses in the composing task. This suggests that suppression of visual feedback only affected processing demands of execution processes and not those of high‐level conceptual and linguistic processes. This is confirmed by analysis of the quality of the texts produced by participants, which were little, if at all, affected by the suppression of visual feedback. Results also indicate that the increase in processing demands of execution related to suppression of visual feedback affected on‐line coordination of the writing processes. Indeed, when visual feedback was suppressed, reaction time interferences associated with handwriting were not reliably different in the copying task or the composing task but were significantly different when visual feedback was not suppressed: They were lower in the copying task than in the composition task. When visual feedback was suppressed, writers activated step‐by‐step execution processes and high‐level writing processes, whereas they concurrently activated these writing processes when composing with visual feedback.  相似文献   

10.
Bimanual coordination requires task-specific control of the spatial and temporal characteristics of the movements of both hands. The present study focused on the spatial relationship between hand movements when their amplitude and direction were manipulated. In the experiment in question, participants were instructed to draw two lines simultaneously. These two lines were instructed to be drawn in mirror symmetric or perpendicular directions of each other while the length was instructed to be the same or different. The coordinative quality of amplitude control was compared when the task required symmetric and asymmetric bimanual spatial coordination patterns. Results showed that the amplitude accuracy decreased when different amplitudes and/or directions had to be generated simultaneously. The coordinative quality of direction was also compared when the task required symmetric and asymmetric bimanual spatial coordination patterns. Unlike amplitude, the direction accuracy was largely independent of coordination symmetry/asymmetry of direction or amplitude. The results suggest that the coordinative quality of amplitude control does not only interfere with amplitude asymmetry, but it also interferes with direction asymmetry. Moreover, in bimanual coordination amplitude control is more vulnerable to the influence of direction control demands than vice versa.  相似文献   

11.
《Human movement science》1999,18(2-3):281-305
Eight right-handed participants performed a bilateral circle tracing task in symmetric or asymmetric patterns. Circle tracing was performed in synchrony with an auditory metronome and a visual display at, or comfortably below, each participant's transition frequency. The visual display consisted of a row of five light-emitting diodes (LEDs) arranged between the two circles (hands). Bimanual pattern stability was examined under conditions where the direction of illumination of the visual stimuli was compatible or incompatible with the hand direction. Symmetric patterns maintained stability for both movement rates whereas asymmetric patterns exhibited loss of stability at the transition frequency. Spontaneous reversals in circling direction occurred predominantly (94%) through the nondominant hand. Laterality effects were also evident in the aspect ratio (circularity of trajectories) and limb frequency variation, particularly in asymmetric patterns at the transition frequency. Compatibility between the stimulus direction and circling direction served to: stabilise symmetric patterns; stabilise asymmetric patterns by delaying the onset of transition; and stabilise the individual limb dynamics when the direction of the dominant side was compatible with the visual stimulus. The data from this multisegmental task lend support to a model of coupled oscillators whereby the coupling strength is anisotropic between the dominant and nondominant side, and lend further support for an account of manual asymmetries by way of a preferential perception–action coupling through the dominant limb. PsycINFO Classification: 2320  相似文献   

12.
The authors examined clockwise and counterclockwise wheel-rotation responses to high- or low-pitched tones presented in participants' (N = 96, Experiment 1; N = 48, Experiment 2; N = 48, Experiment 3) left and right ears. In Experiment 1, a Simon effect (fastest responding when tone location and direction of wheel turn corresponded) was obtained when participants' hands were at the top or middle of the wheel but not at the bottom. With the bottom hand placement, a Simon effect was induced by instructions emphasizing hand movements but not by instructions emphasizing wheel movements (Experiment 2), and by a visual cursor controlled by the wheel but not one triggered by the response (Experiment 3). The results of the experiments showed that the nature of the task and the instructed action goal influence the direction of the Simon effect.  相似文献   

13.
Single and alternating hand tapping were compared to test the hypothesis that coordination during rhythmic movements is mediated by the control of specific time intervals. In Experiment 1, an auditory metronome was used to indicate a set of timing patterns in which a 1-s interval was divided into 2 subintervals. Performance, measured in terms of the deviation from the target patterns and variability, was similar under conditions in which the finger taps were made with 1 hand or alternated between the 2 hands. In Experiment 2, the modality of the metronome (auditory or visual) was found to influence the manner in which the produced intervals deviated from the target patterns. These results challenge the notion that bimanual coordination emerges from coupling constraints intrinsic to the 2-hand system. They are in accord with a framework that emphasizes the control of specific time intervals to form a series of well-defined motor events.  相似文献   

14.
Anchoring in cyclical movements has been defined as regions of reduced spatial or temporal variability [Beek, P. J. (1989). Juggling dynamics. PhD thesis. Amsterdam: Free University Press] that are typically found at movement reversal points. For in-phase and anti-phase movements, synchronizing reversal points with a metronome pulse has resulted in decreased anchor point variability and increased pattern stability [Byblow, W. D., Carson, R. G., & Goodman, D. (1994). Expressions of asymmetries and anchoring in bimanual coordination. Human Movement Science, 13, 3-28; Fink, P. W., Foo, P., Jirsa, V. K., & Kelso, J. A. S. (2000). Local and global stabilization of coordination by sensory information. Experimental Brain Research, 134, 9-20]. The present experiment examined anchoring during acquisition, retention, and transfer of a 90 degrees phase-offset continuous bimanual coordination pattern (whereby the right limb lags the left limb by one quarter cycle), involving horizontal flexion about the elbow. Three metronome synchronization strategies were imposed: participants either synchronized maximal flexion of the right arm (i.e., single metronome), both flexion and extension of the right arm (i.e., double metronome within-limb), or flexion of each arm (i.e., double metronome between-limb) to an auditory metronome. In contrast to simpler in-phase and anti-phase movements, synchronization of additional reversal points to the metronome did not reduce reversal point variability or increase pattern stability. Furthermore, practicing under different metronome synchronization strategies did not appear to have a significant effect on the rate of acquisition of the pattern.  相似文献   

15.
The bimanual coupling literature supposes an inherent drive for synchrony between the upper limbs when making discrete bimanual movements. The level of synchrony is argued to be task dependent, reliant on the visual demands of the two targets, and the result of a complex pattern of hand and eye movements (Bingham, Hughes, & Mon-Williams, 2008 ; Riek, Tresilian, Mon-Williams, Coppard, & Carson, 2003 ). However, recent work by Bruyn and Mason ( 2009 ) suggests that temporal coordination is not solely influenced by visual saccades. In this experimental series, a total of 8 participants performed congruent movements to targets either near or far from the midline. Targets far from the midline, requiring a visual saccade, resulted in greater terminal asynchrony. Initial and terminal asynchrony were not consistent, but linked to the task demands at that stage of the movement. If the asynchrony evident at the end of a bimanual movement is due to a complex pattern of hand and eye movements then the removal of visual feedback should result in an increase in synchrony. Sixteen participants then completed congruent and incongruent bimanual aiming movements to near and/or far targets. Movements were made with or without visual feedback of hands and targets. Analyses revealed that movements made without visual feedback showed increased synchrony between the limbs, yet movements to incongruent targets still showed greater asynchrony. We suggest that visual constraints are not the sole cause of asynchrony in discrete bimanual movements.  相似文献   

16.
The authors investigated how the intention to passively perform a behavior and the intention to persist with a behavior impact upon the spatial and temporal properties of bimanual coordination. Participants (N = 30) were asked to perform a bimanual coordination task that demanded the continuous rhythmic extension-flexion of the wrists. The frequency of movement was scaled by an auditory metronome beat from 1.5 Hz, increasing to 3.25 Hz in.25-Hz increments. The task was further defined by the requirement that the movements be performed initially in a prescribed pattern of coordination (in-phase or antiphase) while the participants assumed one of two different intentional states: stay with the prescribed pattern should it become unstable or do not intervene should the pattern begin to change. Transitions away from the initially prescribed pattern were observed only in trials conducted in the antiphase mode of coordination. The time at which the antiphase pattern of coordination became unstable was not found to be influenced by the intentional state. In addition, the do-not-intervene set led to a switch to an in-phase pattern of coordination whereas the stay set led to phase wandering. Those findings are discussed within the framework of a dynamic account of bimanual coordination.  相似文献   

17.
We have proposed that the stability of bimanual coordination is influenced by the complexity of the representation of the task goals. Here, we present two experiments to explore this hypothesis. First, we examined whether a temporal event structure is present in continuous movements by having participants vocalize while producing bimanual circling movements. Participants tended to vocalize once per movement cycle when moving in-phase. In contrast, vocalizations were not synchronized with anti-phase movements. While the in-phase result is unexpected, the latter would suggest anti-phase continuous movements lack an event structure. Second, we examined the event structure of movements marked by salient turn-around points. Participants made bimanual wrist flexion movements and were instructed to move 'in synchrony' with a metronome, without specifying how they should couple the movements to the metronome. During in-phase movements, participants synchronized one hand cycle with every metronome beat; during anti-phase movements, participants synchronized flexion of one hand with one metronome beat and extension of the other hand with the next beat. The results are consistent with the hypothesis that the instability of anti-phase movements is related to their more complex (or absent) event representation relative to that associated with in-phase movements.  相似文献   

18.
People often coordinate their actions with sequences that exhibit temporal variability and unfold at multiple periodicities. We compared oscillator- and timekeeper-based accounts of temporal coordination by examining musicians' coordination of rhythmic musical sequences with a metronome that gradually changed rate at the end of a musical phrase (Experiment 1) or at the beginning of a phrase (Experiment 2). The rhythms contained events that occurred at the same periodic rate as the metronome and at half the period. Rate change consisted of a linear increase or decrease in intervals between metronome onsets. Musicians coordinated their performances better with a metronome that decreased than increased in tempo (as predicted by an oscillator model), at both beginnings and ends of musical phrases. Model performance was tested with an oscillator period or timekeeper interval set to the same period as the metronome (1:1 coordination) or half the metronome period (2:1 coordination). Only the oscillator model was able to predict musicians' coordination at both periods. These findings suggest that coordination is based on internal neural oscillations that entrain to external sequences.  相似文献   

19.
The authors examined clockwise and counterclockwise wheel-rotation responses to high- or low-pitched tones presented in participants' (N = 96, Experiment 1; N = 48, Experiment 2; N = 48, Experiment 3) left and right ears. In Experiment 1, a Simon effect (fastest responding when tone location and direction of wheel turn corresponded) was obtained when participants' hands were at the top or middle of the wheel but not at the bottom. With line bottom hand placement, a Simon effect was induced by instructions emphasizing hand movements but not by instructions emphasizing wheel movements (Experiment 2), and by a visual cursor controlled by the wheel but not one triggered by the response (Experiment 3). The results of the experiments showed that the nature of the task and the instructed action goal influence the direction of the Simon effect.  相似文献   

20.
A simple instance of coupling behavior to the environment is oscillating the hands in pace with metronome beats. This environmental coupling can be weaker (1 beat per cycle) or stronger (2 beats per cycle). The authors examined whether strength of environmental coupling enhanced the stability of in-phase bimanual coordination. Detuning by manipulanda that produced different left and right eigenfrequencies shifted the relative phase angle from 0 degrees, with the size of the shift larger for higher movement frequencies. Stronger environmental coupling was found to decrease this relative-phase shift, with accompanying increase and reduction, respectively, in recurrence quantification measures related to coordination stability and coordination noise. Stronger environmental coupling also increased oscillation amplitude. Results are considered from the perspective of parametric stabilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号