首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anomalies of movement are observed both clinically and experimentally in schizophrenia. While the basal ganglia have been implicated in its pathogenesis, the nature of such involvement is equivocal. The basal ganglia may be involved in bimanual coordination through their input to the supplementary motor area (SMA). While a neglected area of study in schizophrenia, a bimanual movement task may provide a means of assessing the functional integrity of the motor circuit. Twelve patients with chronic schizophrenia and 12 matched control participants performed a bimanual movement task on a set of vertically mounted cranks at different speeds (1 and 2 Hz) and phase relationships. Participants performed in-phase movements (hands separated by 0 degrees ) and out-of-phase movements (hands separated by 180 degrees ) at both speeds with an external cue on or off. All participants performed the in-phase movements well, irrespective of speed or cueing conditions. Patients with schizophrenia were unable to perform the out-of-phase movements, particularly at the faster speed, reverting instead to the in-phase movement. There was no effect of external cueing on any of the movement conditions. These results suggest a specific problem of bimanual coordination indicative of SMA dysfunction per se and/or faulty callosal integration. A disturbance in the ability to switch attention during the out-of-phase task may also be involved.  相似文献   

2.
Gerloff C  Andres FG 《Acta psychologica》2002,110(2-3):161-186
Bimanual coordination of skilled finger movements requires intense functional coupling of the motor areas of both cerebral hemispheres. This coupling can be measured non-invasively in humans with task-related coherence analysis of multi-channel surface electroencephalography. Since bimanual coordination is a high-level capability that virtually always requires training, this review is focused on changes of interhemispheric coupling associated with different stages of bimanual learning. Evidence is provided that the interaction between hemispheres is of particular importance in the early phase of command integration during acquisition of a novel bimanual task. It is proposed that the dynamic changes in interhemispheric interaction reflect the establishment of efficient bimanual ‘motor routines'. The effects of callosal damage on bimanual coordination and learning are reviewed as well as functional imaging studies related to bimanual movement. There is evidence for an extended cortical network involved in bimanual motor activities which comprises the bilateral primary sensorimotor cortex (SM1), supplementary motor area, cingulate motor area, dorsal premotor cortex and posterior parietal cortex. Current concepts about the functions of these structures in bimanual motor behavior are reviewed.  相似文献   

3.
Five-, 7-, and 9-year-old children were trained and tested in a bimanual coordination task that required them to rotate two cranks (either at the same or at different velocities) using mirror (inwards or outwards) or parallel movements (clockwise or counterclockwise). The task consisted of tracing two lines of different slants, by turning the two cranks either at the same velocity (to draw the 45 degrees slanted line) or at different velocities (to draw the 22 degrees line). The same-velocity condition resulted in significantly better performance than the different-velocities condition with the age x angle interaction: the performance in the different-velocities condition improved considerably at 9 years of age. Mirror movement induced faster and more accurate performance relative to parallel movements in the same-velocity condition but not in the different-velocities condition. This difference was much greater in 5- and 7-year-olds than in 9-year-olds. The results are interpreted as reflecting a decreasing influence of motor constraints on bimanual coordination.  相似文献   

4.
New imaging techniques in cognitive neuroscience have produced a deluge of information correlating cognitive and neural phenomena. Yet our understanding of the inter-relationship between brain and mind remains hampered by the lack of a theoretical language for expressing cognitive functions in neural terms. We propose an approach to understanding operational laws in cognition based on principles of coordination dynamics that are derived from a simple and experimentally verified theoretical model. When applied to the dynamical properties of cortical areas and their coordination, these principles support a mechanism of adaptive inter-area pattern constraint that we postulate underlies cognitive operations generally.  相似文献   

5.
The authors' goal in this study was to probe the basis for an earlier, unexpected finding that preferred-frequency finger tapping tends to have higher frequencies and to be less stable for in-phase than for antiphase tasks. In follow-up experiments, 3 protocols were employed: a preferred-frequency replication in both coordination modes, a metronome-driven matching of the preferred frequencies to each of the coordination modes, and a frequency scaling of both modes. The original findings were affirmed for preferred frequency. Tapping to a metronome had a differential effect on in-phase and antiphase: A more stable coupling across frequencies was exhibited during in-phase. Under frequency scaling, the antiphase pattern decomposed at lower frequencies than did in-phase, but no phase transitions were observed. The loss of stable coordination in both modes was attended by sudden increases in frequency differences between fingers and by phase wandering. The emergence of those effects is discussed in light of asymmetric modifications to the Haken-Kelso-Bunz model (H. Haken, J. A. S. Kelso, & H. Bunz, 1985) and the task constraints of tapping.  相似文献   

6.
This study aims to test the hypothesis that handwriting is governed by the dynamics of non-linear coupled oscillators. Accordingly, its first goal is to identify preferred, basic graphic shapes corresponding to spontaneously stable combinations of the two frequency-locked oscillatory x-y components of the trajectories. Six participants were required to produce 26 ellipsoids of varying eccentricities and orientations presented consecutively on a graphic tablet. These shapes corresponded to a systematic manipulation of the relative phase and the relative amplitude of the oscillators by a constant step. Results showed that among those, only eight ellipsoids were produced in a spontaneous and stable fashion. They were characterized by attraction of nearby shapes, and by a higher accuracy and velocity. Alike all periodic motion, graphic skills, hence handwriting, exhibit preferred coordination patterns, which can be ascribed to the non-linear coupling of two oscillators.  相似文献   

7.
Does a concurrent cognitive task affect the dynamics of bimanual rhythmic coordination? In‐phase coordination was performed under manipulations of phase detuning and movement frequency and either singly or in combination with an arithmetic task. Predicted direction‐specific shifts in stable relative phase from 0° due to detuning and movement frequency were amplified by the cognitive task. Nonlinear cross‐recurrence analysis suggested that this cognitive influence on the locations of the stable points or attractors of coordination entailed a magnification of attractor noise without a reduction in attractor strength. An approximation to these findings was achieved through parameter changes in a motion equation in relative phase. Results are discussed in terms of dual‐task performance as limited resources, dynamics rather than chronometrics, and reparameterization rather than degradation.  相似文献   

8.
In three experiments we measured response time (RT) and peak force (PF) to investigate the grouping of left- and right-hand key press responses in a dual-task paradigm involving two independent go/no-go tasks. Within each task, a go stimulus within one of two modalities (i.e., visual versus auditory) required a response by one hand. In Experiment 1 with simultaneous go stimuli in the two tasks, responses appeared to be grouped in approximately 75-80% of trials, compared with nearly 100% grouping in a single-task condition requiring bimanual responses to the onset of any stimulus in either modality. In Experiment 2 with stimulus onset asynchronies (SOAs) of 0-400 ms between the two go stimuli, response grouping clearly declined as SOA increased, although some grouping was still evident even at the longest SOA. The same pattern was observed in Experiment 3 with the same range of SOAs but unpredictable stimulus order, suggesting that grouping is not strongly dependent on prior knowledge of the likely response order. These results emphasize the pervasiveness of response grouping in bimanual dual-task RT paradigms and provide useful clues as to its nature.  相似文献   

9.
Intentional and attentional dynamics of speech-hand coordination   总被引:1,自引:0,他引:1  
Interest is rapidly growing in the hypothesis that natural language emerged from a more primitive set of linguistic acts based primarily on manual activity and hand gestures. Increasingly, researchers are investigating how hemispheric asymmetries are related to attentional and manual asymmetries (i.e., handedness). Both speech perception and production have origins in the dynamical generative movements of the vocal tract known as articulatory gestures. Thus, the notion of a "gesture" can be extended to both hand movements and speech articulation. The generative actions of the hands and vocal tract can therefore provide a basis for the (direct) perception of linguistic acts. Such gestures are best described using the methods of dynamical systems analysis since both perception and production can be described using the same commensurate language. Experiments were conducted using a phase transition paradigm to examine the coordination of speech-hand gestures in both left- and right-handed individuals. Results address coordination (in-phase vs. anti-phase), hand (left vs. right), lateralization (left vs. right hemisphere), focus of attention (speech vs. tapping), and how dynamical constraints provide a foundation for human communicative acts. Predictions from the asymmetric HKB equation confirm the attentional basis of functional asymmetry. Of significance is a new understanding of the role of perceived synchrony (p-centres) during intentional cases of gestural coordination.  相似文献   

10.
Bimanual handedness in adults who stutter   总被引:2,自引:0,他引:2  
25 adult stutterers and 29 nonstutterers who were right-handed as defined by a positive Laterality Quotient on the Edinburgh Handedness Inventory were compared with respect to their pattern of hand use in performing seven common tasks that involve bimanual cooperation. Among the stutterers was a higher proportion of participants who showed anomalies in how they carried out the two tasks that required synchronous manipulation by the two hands. On two other tasks that required speeded performance, the groups were similar in dealing playing cards with the right or left hands, but the stutterers were slower than nonstutterers and did not show a right-hand advantage on a task requiring removal of a nut from a bolt. The results were interpreted as indicating difficulty by stutterers in carrying out synchronously different response elements of motoric tasks.  相似文献   

11.
In three experiments we measured response time (RT) and peak force (PF) to investigate the grouping of left- and right-hand key press responses in a dual-task paradigm involving two independent go/no-go tasks. Within each task, a go stimulus within one of two modalities (i.e., visual versus auditory) required a response by one hand. In Experiment 1 with simultaneous go stimuli in the two tasks, responses appeared to be grouped in approximately 75–80% of trials, compared with nearly 100% grouping in a single-task condition requiring bimanual responses to the onset of any stimulus in either modality. In Experiment 2 with stimulus onset asynchronies (SOAs) of 0–400 ms between the two go stimuli, response grouping clearly declined as SOA increased, although some grouping was still evident even at the longest SOA. The same pattern was observed in Experiment 3 with the same range of SOAs but unpredictable stimulus order, suggesting that grouping is not strongly dependent on prior knowledge of the likely response order. These results emphasize the pervasiveness of response grouping in bimanual dual-task RT paradigms and provide useful clues as to its nature.  相似文献   

12.
In studies of postural control, investigators have used either experimentally induced perturbations to stance or unperturbed stance. The distinction between perturbed and unperturbed stance has gained renewed importance in the context of inphase and antiphase coordination of the hips and ankles. Several contributions have replicated the findings published over the past decade, suggesting the possibility of a unified view of postural control. However, any proposed unified view depends on how so called perturbed and unperturbed are defined. The authors argue that, to date, there is no explicit and general definition of those terms. The main reason is that all perturbations are relative and depend on appropriate frames of reference for perception and action. Arguments about empirical or theoretical unification of perturbed and unperturbed stance are premature.  相似文献   

13.
The authors investigated whether training can reduce bimanual directional interference by using a star-line drawing paradigm. Participants (N = 30) were required to perform rhythmical arm movements with identical temporal but differing directional demands. Moreover, the effectiveness of part-task training in which each movement was practiced in isolation was compared with that of whole-task training in which only combined movements were performed. Findings revealed that bimanual training substantially reduced spatial interference, but unimanual training did not. The authors therefore concluded that the spatial coupling of the limbs is not implemented in a rigid way; instead, the underlying neural correlate can undergo plastic changes induced by training. Moreover, the practical implication that emerged from the present study is that athletic, musical, or ergonomic skills that require a high degree of interlimb coordination are best served by whole-task practice.  相似文献   

14.
Two experiments examined the effects of independent variations in kinetic and kinematic requirements on interlimb coupling during a bimanual task. The goal of the investigation was to provide preliminary evidence regarding one general class of physical variables that constrains discrete bimanual movements. Subjects attempted to execute a smooth unidirectional movement with the left arm, along with a three-segment reversal movement with the right arm. The first experiment manipulated the torque required to produce the reversal action, while movement duration and average angular velocity were held constant for both limbs. Several indications of increased interlimb coupling, due to the kinetic variation, were evident. The converse manipulation was used in the second experiment, with movement time and kinematics (velocity, acceleration) changed independently of joint torque requirements for the reversal limb. No clear effect of kinematics on coupling strength was noted. The results suggest that one variable influencing interlimb attraction toward common spatiotemporal trajectories may be kinetic in nature.  相似文献   

15.
Despite their common origin, studies on motor coordination and on attentional load have developed into separate fields of investigation, bringing out findings, methods, and theories which are diverse if not mutually exclusive. Sitting at the intersection of these two fields, this article addresses the issue of behavioral flexibility by investigating how intention modifies the stability of existing patterns of coordination between moving limbs. It addresses the issue, largely ignored until now, of the attentional cost incurred by the central nervous system (CNS) in maintaining a coordination pattern at a given level of stability, in particular under different attentional priority requirements. The experimental paradigm adopted in these studies provides an original mix of a classical measure of attentional load, namely, reaction time, and of a dynamic approach to coordination, most suitable for characterizing the dynamic properties of coordinated behavior and behavioral change. Findings showed that central cost and pattern stability covary, suggesting that bimanual coordination and the attentional activity of the CNS involved in maintaining such a coordination bear on the same underlying dynamics. Such a conclusion provides a strong support to a unified approach to coordination encompassing a conceptualization in terms of information processing and another, more recent framework rooted in self-organization theories and dynamical systems models  相似文献   

16.
17.
The authors investigated whether training can reduce bimanual directional interference by using a star-line drawing paradigm, Participants (N = 30) were required to perform rhythmical arm movements with identical temporal but differing directional demands. Moreover, the effectiveness of part-task training in which each movement was practiced in isolation was compared with that of whole-task training in which only combined movements were performed. Findings revealed that bimanual training substantially reduced spatial interference, but unimanual training did not. The authors therefore concluded that the spatial coupling of the limbs is not implemented in a rigid way; instead, the underlying neural correlate can undergo plastic changes induced by training. Moreover, the practical implication that emerged from the present study is that athletic, musical, or ergonomic skills that require a high degree of interlimb coordination are best served by whole-task practice.  相似文献   

18.
The influence of focal attention on the coordination dynamics in a bimanual circle drawing task was investigated. Six right-handed and seven left-handed subjects performed bimanual circling movements, in two modes of coordination, symmetrical or asymmetrical. The frequency of movement was scaled by an auditory metronome from 1.50 Hz to 3.00 Hz in 7 steps. On each trial, subjects were required to attend either to the dominant hand, to a neutral position, or to the nondominant hand.The uniformity of the relative tangential angle was lower in asymmetrical than in symmetrical conditions, but was not influenced by the direction of attention. In the asymmetrical mode, shifts in RTA relations, suggestive of loss of stability, were evident as the movement frequency was increased. Typically, these shifts were mediated by distortions of the trajectory of the nondominant limb. When the nondominant hand was the focus of attention, movements of this hand were more circular, and temporal variability was reduced, at the cost of a greater deviation from the target frequency. Movements of the dominant hand were not affected by the direction of attention. The findings show that although directed attention acts to modify the coordination dynamics, it does so primarily at the level of the individual hands, rather then in terms of the relation between them.  相似文献   

19.
Transitions between the coordinative patterns of rhythmically moving human arms and legs were studied to test the predictions of a four-component model (Schöner, Jiang and Kelso, 1990). Based upon results from previous two-component experiments (Kelso and Jeka, 1992), three assumptions were made about the four-limb system: (1) all limb pairs produce stable in-phase and anti-phase patterns; (2) the coupling between homologous limbs (i.e., right and left arms or right and left legs) is appreciably stronger than the coupling between nonhomologous limbs (i.e., arm and leg); and (3) right-left symmetry. An analysis of a four-component model (Jeka, Kelso and Kiemel, 1993) led to the prediction of four attracting invariant circles, each with two stable patterns in the state space of four-limb dynamics. In an experiment to test this prediction, subjects were required to cycle all four limbs in one of the eight patterns to the beat of an auditory metronome whose frequency was systematically increased. All subjects demonstrated spontaneous transitions corresponding to pathways along the invariant circles. Pre-transition relative phase variability increased with required frequency up to the transition, suggesting that loss of pattern stability induced the observed transitions. Thus, despite a large number of potential transitions, differential coupling between limb pairs and symmetry of the pattern dynamics restricts the behavior of the human four-limb system to a limited area of its state space.  相似文献   

20.
Synchronous coordination between two body segments departs from phase locking at 0 or pi radians when the segments are asymmetrical. In models of coordination dynamics, this detuning is typically quantified by Deltaomega = (omega1 - omega2), where omega1 and omega2 are the uncoupled frequencies of the two segments. An experiment is reported in which the magnitude of Deltaomega not equal 0 was satisfied by different ratios Omega of omega1 and omega2. The degree of detuning was found to vary systematically with Omega and Deltaomega. This result corroborates previous research using the complementary manipulation of varying Deltaomega for a fixed Omega. A challenge for future dynamical modeling is identifying precisely how the detuning quantity incorporates both the absolute and relative differences in the. uncoupled segmental frequencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号