首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relation between perceptual information and the motor response during lane-change manoeuvres was studied in a fixed-based driving simulator. Eight subjects performed 48 lane changes with varying vehicle speed, lane width and direction of movement. Three sequential phases of the lane change manoeuvre are distinguished. During the first phase the steering wheel is turned to a maximum angle. After this the steering wheel is turned to the opposite direction. The second phase ends when the vehicle heading approaches a maximum that generally occurs at the moment the steering wheel angle passes through zero. During the third phase the steering wheel is turned to a second maximum steering wheel angle in opposite direction to stabilize the vehicle in the new lane. Duration of the separate phases were analysed together with steering amplitudes and Time-to-Line Crossing in order to test whether and how drivers use the outcome of each phase during the lane change manoeuvre to adjust the way the subsequent phase is executed. During the first phase the time margin to the outer lane boundary was controlled by the driver such that a higher speed was compensated for by a smaller steering wheel amplitude. Due to this mechanism the time margin to the lane boundary was not affected by vehicle speed. During the second phase the speed with which the steering wheel was turned to the opposite direction was affected by the time margins to the lane boundary at the start of the second phase. Thereafter, smaller minimum time margins were compensated for by a larger steering wheel amplitude to the opposite direction. The results suggest that steering actions are controlled by the outcome of previous actions in such a way that safety margins are maintained. The results also suggest that visual feedback is used by the driver during lane change manoeuvres to control steering actions, resulting in flexible and adaptive steering behaviour. Evidence is presented in support of the idea that temporal information on the relation between the vehicle and lane boundaries is used by the driver in order to control the motor response.  相似文献   

2.
This study evaluates the efficacy of haptic feedback for the Blind Spot Warnings (BSWs) that are delivered to a driver through a steering wheel or a seatbelt. To this end, we developed a virtual driving simulator that implemented potential side collision scenarios. Haptic BSWs were issued as a vibrotactile alert during lane changes if a car in the target lane approached from the participant’s blind spot at a faster speed. The two haptic warning types were assessed through a human factors experiment with participants of two age groups: younger (30–40 years) and older (50–60 years). No warning condition was also included as the control condition. As performance measures, the Collision Prevention Rate (CPR) and the Minimum Distance by which a collision was Avoided (MDA) were collected. As preference measures, the participants’ perception of usefulness of the haptic warnings and their overall satisfaction were used. Experimental results showed that the highest CPR, the longest MDA, and the highest preference were achieved when BSWs were delivered through the steering wheel. For the seatbelt BSW, the CPR and MDA did not increase with statistical significance than those of the no-warning condition, but the participants felt that the haptic seatbelt was useful with high satisfaction. Interestingly, the scores of perceived usefulness and satisfaction were higher with the older group, suggesting that older drivers can be more willing to accept these new types of warning. In addition, the experiment suggested several factors that need to be studied to further improve the performance and preference of haptic BSW, such as warning issue timing and vibration intensity.  相似文献   

3.
Paved shoulders have long been used to create “forgiving” roads where drivers can maintain control of their vehicles even when as they drift out of the lane. While the safety benefits of shoulders have been well documented, their effects on driver behavior around curves have scarcely been examined. The purpose of this paper is to fill this gap by assessing whether the addition of shoulders affects driver behavior differently as a function of bend direction. Driver behavior in a driving simulator was analyzed on left and right curves of two-lane rural roads in the presence and absence of 0.75-m and 1.25-m shoulders. The results demonstrated significant changes in drivers’ lateral control when shoulders were provided. In the absence of oncoming traffic, the shoulders caused participants to deviate more toward the inner lane edge at curve entry, at the apex and at the innermost position on right bends but not left ones. In the presence of oncoming traffic, this also occurred at the apex and the innermost position, leading participants to spend more time off the lane on right curves. Participants did not slow down in either traffic condition to compensate for steering farther inside, thereby increasing the risk of lane departure on right curves equipped with shoulders. These findings highlight the direction-specific influence of shoulders on a driver’s steering control when driving around bends. They provide arguments supporting the idea that drivers view paved shoulders as a new field of safe travel on right curves. Recommendations are made to encourage drivers to keep their vehicle within the lane on right bends and to prevent potential interference with cyclists when a shoulder is present.  相似文献   

4.
Driver’s inattention is the main reason for lane departure accidents in highway traffic. In this paper, the pulse steering torque warnings technique is studied, and the effects of pattern, amplitude and frequency of pulse steering torque warnings on the effectiveness and customers’ acceptance are studied through in-door experiments based on a fixed-based driving simulator. Prototypes of lane departure warning system with twelve parameter settings were developed. Three-ways repeated measures ANOVAS and t-test are used to assess the effects of warning systems. The steering behaviors of 20 drivers during lane departure are analyzed. The experimental results show that both primary and secondary interaction of amplitude, frequency and pattern are not significant. The superimposed square pulse steering torque is more effective than triangular pulse one. There is little difference of drivers’ preference in pulse patterns. Although large amplitude is less accepted by drivers, it improves the correction maneuver greatly. 10 Hz is a preferred frequency, which achieves a compromise between effectiveness and drivers’ acceptance. Thus, the combination of small amplitude, square and mid-frequency is the best compromise for practical application.  相似文献   

5.
Lane departure warnings (LDW) have the potential to mitigate a significant number of lane departure crashes. Such safety benefits have yet been realized, in part due to drivers deactivating LDW systems. Perceived false alarms—where drivers receive a warning but feel the warning was unnecessary or incorrect—could lead to system disuse. In part, this could be a failure of LDW systems to account for the state of the driver. The current study investigated whether LDWs were more effective for drivers when they were distracted compared to when they were undistracted, using a high-fidelity driving simulator. During distracted lane departures, drivers with LDW responded faster and had less severe lane departures than drivers without LDW. During undistracted lane departures, there was no evidence of a benefit of LDW over no warning. These results suggest that lane departure warnings are most effective when drivers are distracted. This study suggests a need for driver state monitoring systems to enable adaptive automation.  相似文献   

6.
In a series of 4 experiments, the authors examined involuntary rotations of a steering device (handlebar or wheel) that were associated with periodic head rotations and eccentric head positions. Periodic head rotations resulted in isodirectional involuntary rotations of a horizontally arranged steering device of very small amplitude. When the orientation of a steering wheel was changed to vertical and to a backward tilt, the involuntary rotations were in the opposite direction. That pattern of results is consistent with the assumption that small movements of the shoulder girdle, which are associated with head turns and which cannot be prevented by mechanical immobilization of the shoulder, are propagated to the wheel, but is not consistent with previous suggestions that involuntary rotations of a steering device can result from the action of the tonic neck reflex. Effects that correspond to the pattern of the tonic neck reflex were found only when a spring-centered handlebar was held in an eccentric position; maintenance of the eccentric position was facilitated when the participant's head was turned in the opposite direction. The findings strongly suggest that head movements can result in involuntary movements of a steering device via different mechanisms.  相似文献   

7.
In a series of 4 experiments, the authors examined involuntary rotations of a steering device (handlebar or wheel) that were associated with periodic head rotations and eccentric head positions. Periodic head rotations resulted in isodirectional involuntary rotations of a horizontally arranged steering device of very small amplitude. When the orientation of a steering wheel was changed to vertical and to a backward tilt, the involuntary rotations were in the opposite direction. That pattern of results is consistent with the assumption that small movements of the shoulder girdle, which are associated with head turns and which cannot be prevented by mechanical immobilization of the shoulder, are propagated to the wheel, but is not consistent with previous suggestions that involuntary rotations of a steering device can result from the action of the tonic neck reflex. Effects that correspond to the pattern of the tonic neck reflex were found only when a spring-centered handlebar was held in an eccentric position; maintenance of the eccentric position was facilitated when the participant's head was turned in the opposite direction. The findings strongly suggest that head movements can result in involuntary movements of a steering device via different mechanisms.  相似文献   

8.
Reaction times (RTs) of aiming movements are typically shorter when responses are prepared by informative precues. Aside from RT facilitation, response preparation can also modify the velocity profile of the movement trajectory. In this study we assess the preparatory effects of advance information about direction and number of lanes in a lane change task. Consistent with the findings of previous studies with aiming movements, prior information reduced RT and affected the velocity profile of the steering angle. The velocity profile was mainly shortened around the first peak steering wheel angle, and this finding is in line with the movement integration hypothesis. The results suggest that the findings from basic research can be generalized to driving tasks.  相似文献   

9.
Correctly designed roundabouts proved to have positive safety and functional performances. However, they are also affected by peculiar disadvantages. In particular, they are difficult to manoeuvre, especially for heavy vehicle drivers. Despite these concerns, there are currently no driving workload metrics devoted to roundabouts.A novel methodological approach is proposed for trying to quantify workload impinging on heavy vehicle drivers when manoeuvring through complex at-grade intersections. Proper acquisition of input data constitutes the starting point for future research about ascertainment of workload for these particular road scenarios. The described procedure enables recording steering wheel angles performed by a driver when manoeuvring an articulated lorry through a complex at-grade intersection. A field trial was carried out for verifying the practical feasibility of proposed method in capturing driver’s steering behaviour. Dynamic data acquired via global navigation satellite system instrumentation were related to actual driver’s steering wheel behaviour captured by camera frames. As a complement to the experiment, selected steering behaviour metrics were calculated. Steering Entropy attributed a high difficulty level to the manoeuvres performed through the roundabout, whereas High Frequency Component and Steering Reversal Rate showed intensity and occurrences of driver’s corrections needed for controlling position of the semitrailer at the ring. It appears that even a single roundabout may represent an arduous task for drivers. The study concludes with recommendations for further research about workload imposed by roundabouts to heavy vehicle drivers, with special attention to successions of closely spaced roundabouts.  相似文献   

10.
Motor responses can be facilitated by congruent visual stimuli and prolonged by incongruent visual stimuli that are made invisible by masking (direct motor priming). Recent studies on direct motor priming showed a reversal of these priming effects when a three-stimulus paradigm was used in which a prime was followed by a mask and a target stimulus was presented after a delay. A similar three-stimulus paradigm on nonmotor priming, however, showed no reversal of priming effects when the mask was used as a cue for processing of the following target stimulus (cue priming). Experiment 1 showed that the time interval between mask and target is crucial for the reversal of priming. Therefore, the time interval between mask and target was varied in three experiments to see whether cue priming is also subject to inhibition at a certain time interval. Cues indicated (1) the stimulus modality of the target stimulus, (2) the task to be performed on a multidimensional auditory stimulus, or (3) part of the motor response. Whereas direct motor priming showed the reversal of priming about 100 msec after mask presentation, cue priming effects simply decayed during the 300 msec after mask presentation. These findings provide boundary conditions for accounts of inverse priming effects.  相似文献   

11.
Unconscious stimuli can influence participants’ motor behavior but also more complex mental processes. Recent research has gradually extended the limits of effects of unconscious stimuli. One field of research where such limits have been proposed is spatial cueing, where exogenous automatic shifts of attention have been distinguished from endogenous controlled processes which govern voluntary shifts of attention. Previous evidence suggests unconscious effects on mechanisms of exogenous shifts of attention. Here, we applied a cue-priming paradigm to a spatial cueing task with arbitrary cues by centrally presenting a masked symmetrical prime before every cue stimulus. We found priming effects on response times in target discrimination tasks with the typical dynamic of cue-priming effects (Experiments 1 and 2) indicating that central symmetrical stimuli which have been associated with endogenous orienting can modulate shifts of spatial attention even when they are masked. Prime–Cue Congruency effects of perceptual dissimilar prime and cue stimuli (Experiment 3) suggest that these effects cannot be entirely reduced to perceptual repetition priming of cue processing. In addition, priming effects did not differ between participants with good and poor prime recognition performance consistent with the view that unconscious stimulus features have access to processes of endogenous shifts of attention.  相似文献   

12.
An experiment combined exogenous spatial cueing with masked repetition priming. The task consisted of an alphabetic decision task (letter/pseudo-letter classification) with central targets and peripheral primes that were preceded by a valid or invalid spatial cue in the form of an exogenous abrupt onset. In an analysis including only participants who were not aware of prime stimuli, exogenous location cueing was found to reliably modulate the size of unconscious priming effects. These findings suggest that in early vision the exogenous cue boosts the signal at the location of the cue resulting in a higher gain for the subliminal prime. Our findings therefore suggest that exogenous cueing can affect the first feedforward sweep of information through the brain, a processing stream which is considered to be automatic and unconscious.  相似文献   

13.
As part of the HASTE European Project, effects of visual and cognitive demand on driving performance and driver state were systematically investigated by means of artificial, or surrogate, In-vehicle Information Systems (S-IVIS). The present paper reports results from simulated and real motorway driving. Data were collected in a fixed base simulator, a moving base simulator and an instrumented vehicle driven in real traffic. The data collected included speed, lane keeping performance, steering wheel movements, eye movements, physiological signals and self-reported driving performance. The results show that the effects of visual and cognitive load affect driving performance in qualitatively different ways. Visual demand led to reduced speed and increased lane keeping variation. By contrast, cognitive load did not affect speed and resulted in reduced lane keeping variation. Moreover, the cognitive load resulted in increased gaze concentration towards the road centre. Both S-IVIS had an effect on physiological signals and the drivers’ assessment of their own driving performance. The study also investigated differences between the three experimental settings (static simulator, moving base simulator and field). The results are discussed with respect to the development of a generic safety test regime for In-vehicle Information Systems.  相似文献   

14.
According to legislation, take-overs initiated by the driver must always be possible during automated driving. For example, when drivers mistrust the automation to handle a critical and hazardous lane change, they might intervene and take over control while the automation is performing the maneuver. In these situations, drivers may have little time to avoid an accident and can be exposed to high lateral forces. Due to lacking research, it is yet unknown if they recognize the criticality of the situation and how they behave and perform to manage it. In a driving simulator study, participants (N = 60) accomplished eight double lane changes to evade obstacles in their lane. Time-to-collision and traction usage were varied to establish different degrees of objective criticality. To manipulate these parameters as required, participants were triggered to take over control by an acoustic cue. This setting shows what might happen if drivers disable the automation and complete the maneuver themselves. The results of the experiment demonstrate that drivers rated objectively more critical driving situations as more critical and responded to the hazard very fast over all experimental conditions. However, their behavior was more extreme with respect to decelerating and steering than necessary. This impaired driving performance and increased the risk of lane departures and collisions. The results of the experiment can be used to develop an assistance system that supports driver-initiated take-overs.  相似文献   

15.
Haptic guidance can improve the immediate performance of a motor task by enforcing a desired pattern of kinematics, but several studies have found that it impairs motor learning. In this study, we studied whether guidance from a robotic steering wheel can improve one's short-term learning of steering a simulated vehicle. We developed a computer algorithm that adapted the firmness of the guidance based on ongoing error. Training with "guidance-as-needed" or "fixed guidance" allowed participants to learn to steer without experiencing large errors and produced slightly better immediate retention than did training without guidance, apparently because participants were better able to learn when to initiate turns. Training with guidance-as-needed produced slightly better results than training with fixed guidance: the guidance-as-needed participants' errors were significantly smaller when guidance was removed. However, this difference quickly dissipated with more practice. We conclude that haptic guidance can benefit short-term learning of a steering-type task while also limiting performance errors during training.  相似文献   

16.
Haptic guidance can improve the immediate performance of a motor task by enforcing a desired pattern of kinematics, but several studies have found that it impairs motor learning. In this study, we studied whether guidance from a robotic steering wheel can improve one's short-term learning of steering a simulated vehicle. We developed a computer algorithm that adapted the firmness of the guidance based on ongoing error. Training with "guidance-as-needed" or "fixed guidance" allowed participants to learn to steer without experiencing large errors and produced slightly better immediate retention than did training without guidance, apparently because participants were better able to learn when to initiate turns. Training with guidance-as-needed produced slightly better results than training with fixed guidance: the guidance-as-needed participants' errors were significantly smaller when guidance was removed. However, this difference quickly dissipated with more practice. We conclude that haptic guidance can benefit short-term learning of a steering-type task while also limiting performance errors during training.  相似文献   

17.
Green JJ  Woldorff MG 《Cognition》2012,122(1):96-101
The observation of cueing effects (faster responses for cued than uncued targets) rapidly following centrally-presented arrows has led to the suggestion that arrows trigger rapid automatic shifts of spatial attention. However, these effects have primarily been observed during easy target-detection tasks when both cue and target remain on the screen until the behavioral response. We manipulated stimulus duration and task difficulty in an attention-cueing experiment to explore non-attentional explanations for rapid cueing effects. Contrary to attention-based predictions, short-interval cueing effects were observed only for long-duration cue and target stimuli, occurred even when the cue and target were presented simultaneously, and were driven by slowing of the uncued-target responses, rather than any facilitation for cued targets. We propose that, under these long-duration, short-interval conditions, the processing of the cue and target interact more extensively in the brain, and that when the cue and target convey incongruent spatial information (i.e., on invalidly cued trials) it leads to conflict-related slowing of responses.  相似文献   

18.
A leading vehicle’s sudden deceleration can lead to a rear-end collision. Due to a lack of driving experience, novice drivers have a greater tendency to be involved in these accidents. Most previous studies have examined driver response time and braking behaviors, but few researchers have focused on what experienced and novice drivers did after their feet touched the braking pedal and their hands turned the steering wheel. These braking and steering parameters are essential in understanding driver avoidance behavior during emergencies. We programmed rear-end crash risk scenarios to examine experienced and novice drivers’ behaviors thoroughly using a driving simulator. Twenty experienced and twenty five novice subjects participated in our experiments, and their braking and steering maneuvers were recorded when leading vehicles ran at 60 km/h, 80 km/h and 100 km/h. The results showed that the two groups of subjects tended to execute two kinds of maneuvers to avoid crashes: braking only (novice 33%, experienced 19%) and the combination of braking with steering (novice 22%, experienced 26%). When the novice drivers executed braking with steering, their response time and steering duration were significantly longer than those of the experienced drivers who executed braking with steering. As the speed increased, the novice drivers’ response time, maximum braking force and maximum steering angle were significantly affected. These results showed that novice drivers should brake only when the leading vehicle suddenly decelerates. The experienced drivers executed steadier maneuvers. Their risk perception time was shorter, and their maximum braking force and the maximum steering angles were smaller. The response time, braking intensity and steering wheel angle should be considered when developing rear-end collision warning systems.  相似文献   

19.
Distracted driving due to mobile phone use has been identified as a major contributor to accidents; therefore, it is required to develop ways for detecting driver distraction due to phone use. Though prior literature has documented various visual behavioural and physiological techniques to identify driver distraction, comparatively little is known about vehicle based performance features which can identify driver’s distracted state during phone conversation and texting while driving. Therefore, this study examined the effects of simple conversation, complex conversation, simple texting and complex texting tasks on vehicle based performance parameters such as standard deviation of lane positioning, number of lane excursions, mean and standard deviation of lateral acceleration, mean and standard deviation of steering wheel angle and steering reversal rates (for 1°, 5° and 10° angle differences). All these performance measures were collected for 100 licensed drivers, belonging to three age groups (young, mid-age and old age), with the help of a driving simulator. Effects of all the phone use conditions and driver demographics (age, gender and phone use habits) on the measures were analysed by repeated measures ANOVA tests. Results showed that 1°, 5° SRRs are able to identify all the distracted conditions except for simple conversation; while, 10° SSR can detect all the distracted conditions (including simple conversation). The results suggest that 10° SRR can be included in intelligent in-vehicle devices in order to detect distraction and alert drivers of their distracted state. This can prevent mobile phone use during driving and therefore can help in reducing the road accidents due to mobile phone distractions.  相似文献   

20.
A two-point visual control model of steering   总被引:1,自引:0,他引:1  
Salvucci DD  Gray R 《Perception》2004,33(10):1233-1248
When steering down a winding road, drivers have been shown to use both near and far regions of the road for guidance during steering. We propose a model of steering that explicitly embodies this idea, using both a 'near point' to maintain a central lane position and a 'far point' to account for the upcoming roadway. Unlike control models that integrate near and far information to compute curvature or more complex features, our model relies solely on one perceptually plausible feature of the near and far points, namely the visual direction to each point. The resulting parsimonious model can be run in simulation within a realistic highway environment to facilitate direct comparison between model and human behavior. Using such simulations, we demonstrate that the proposed two-point model is able to account for four interesting aspects of steering behavior: curve negotiation with occluded visual regions, corrective steering after a lateral drift, lane changing, and individual differences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号