首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Unless data are missing completely at random (MCAR), proper methodology is crucial for the analysis of incomplete data. Consequently, methods for effectively testing the MCAR mechanism become important, and procedures were developed via testing the homogeneity of means and variances–covariances across the observed patterns (e.g., Kim & Bentler in Psychometrika 67:609–624, 2002; Little in J Am Stat Assoc 83:1198–1202, 1988). The current article shows that the population counterparts of the sample means and covariances of a given pattern of the observed data depend on the underlying structure that generates the data, and the normal-distribution-based maximum likelihood estimates for different patterns of the observed sample can converge to the same values even when data are missing at random or missing not at random, although the values may not equal those of the underlying population distribution. The results imply that statistics developed for testing the homogeneity of means and covariances cannot be safely used for testing the MCAR mechanism even when the population distribution is multivariate normal.  相似文献   

2.
Incomplete or missing data is a common problem in almost all areas of empirical research. It is well known that simple and ad hoc methods such as complete case analysis or mean imputation can lead to biased and/or inefficient estimates. The method of maximum likelihood works well; however, when the missing data mechanism is not one of missing completely at random (MCAR) or missing at random (MAR), it too can result in incorrect inference. Statistical tests for MCAR have been proposed, but these are restricted to a certain class of problems. The idea of sensitivity analysis as a means to detect the missing data mechanism has been proposed in the statistics literature in conjunction with selection models where conjointly the data and missing data mechanism are modeled. Our approach is different here in that we do not model the missing data mechanism but use the data at hand to examine the sensitivity of a given model to the missing data mechanism. Our methodology is meant to raise a flag for researchers when the assumptions of MCAR (or MAR) do not hold. To our knowledge, no specific proposal for sensitivity analysis has been set forth in the area of structural equation models (SEM). This article gives a specific method for performing postmodeling sensitivity analysis using a statistical test and graphs. A simulation study is performed to assess the methodology in the context of structural equation models. This study shows success of the method, especially when the sample size is 300 or more and the percentage of missing data is 20% or more. The method is also used to study a set of real data measuring physical and social self-concepts in 463 Nigerian adolescents using a factor analysis model.  相似文献   

3.
Missing data, such as item responses in multilevel data, are ubiquitous in educational research settings. Researchers in the item response theory (IRT) context have shown that ignoring such missing data can create problems in the estimation of the IRT model parameters. Consequently, several imputation methods for dealing with missing item data have been proposed and shown to be effective when applied with traditional IRT models. Additionally, a nonimputation direct likelihood analysis has been shown to be an effective tool for handling missing observations in clustered data settings. This study investigates the performance of six simple imputation methods, which have been found to be useful in other IRT contexts, versus a direct likelihood analysis, in multilevel data from educational settings. Multilevel item response data were simulated on the basis of two empirical data sets, and some of the item scores were deleted, such that they were missing either completely at random or simply at random. An explanatory IRT model was used for modeling the complete, incomplete, and imputed data sets. We showed that direct likelihood analysis of the incomplete data sets produced unbiased parameter estimates that were comparable to those from a complete data analysis. Multiple-imputation approaches of the two-way mean and corrected item mean substitution methods displayed varying degrees of effectiveness in imputing data that in turn could produce unbiased parameter estimates. The simple random imputation, adjusted random imputation, item means substitution, and regression imputation methods seemed to be less effective in imputing missing item scores in multilevel data settings.  相似文献   

4.
宋枝璘  郭磊  郑天鹏 《心理学报》2022,54(4):426-440
数据缺失在测验中经常发生, 认知诊断评估也不例外, 数据缺失会导致诊断结果的偏差。首先, 通过模拟研究在多种实验条件下比较了常用的缺失数据处理方法。结果表明:(1)缺失数据导致估计精确性下降, 随着人数与题目数量减少、缺失率增大、题目质量降低, 所有方法的PCCR均下降, Bias绝对值和RMSE均上升。(2)估计题目参数时, EM法表现最好, 其次是MI, FIML和ZR法表现不稳定。(3)估计被试知识状态时, EM和FIML表现最好, MI和ZR表现不稳定。其次, 在PISA2015实证数据中进一步探索了不同方法的表现。综合模拟和实证研究结果, 推荐选用EM或FIML法进行缺失数据处理。  相似文献   

5.
Traditional structural equation modeling (SEM) techniques have trouble dealing with incomplete and/or nonnormal data that are often encountered in practice. Yuan and Zhang (2011a) developed a two-stage procedure for SEM to handle nonnormal missing data and proposed four test statistics for overall model evaluation. Although these statistics have been shown to work well with complete data, their performance for incomplete data has not been investigated in the context of robust statistics.

Focusing on a linear growth curve model, a systematic simulation study is conducted to evaluate the accuracy of the parameter estimates and the performance of five test statistics including the naive statistic derived from normal distribution based maximum likelihood (ML), the Satorra-Bentler scaled chi-square statistic (RML), the mean- and variance-adjusted chi-square statistic (AML), Yuan-Bentler residual-based test statistic (CRADF), and Yuan-Bentler residual-based F statistic (RF). Data are generated and analyzed in R using the package rsem (Yuan & Zhang, 2011b).

Based on the simulation study, we can observe the following: (a) The traditional normal distribution-based method cannot yield accurate parameter estimates for nonnormal data, whereas the robust method obtains much more accurate model parameter estimates for nonnormal data and performs almost as well as the normal distribution based method for normal distributed data. (b) With the increase of sample size, or the decrease of missing rate or the number of outliers, the parameter estimates are less biased and the empirical distributions of test statistics are closer to their nominal distributions. (c) The ML test statistic does not work well for nonnormal or missing data. (d) For nonnormal complete data, CRADF and RF work relatively better than RML and AML. (e) For missing completely at random (MCAR) missing data, in almost all the cases, RML and AML work better than CRADF and RF. (f) For nonnormal missing at random (MAR) missing data, CRADF and RF work better than AML. (g) The performance of the robust method does not seem to be influenced by the symmetry of outliers.  相似文献   

6.
缺失值是社会科学研究中非常普遍的现象。全息极大似然估计和多重插补是目前处理缺失值最有效的方法。计划缺失设计利用特殊的实验设计有意产生缺失值, 再用现代的缺失值处理方法来完成统计分析, 获得无偏的统计结果。计划缺失设计可用于横断面调查减少(或增加)问卷长度和纵向调查减少测量次数, 也可用于提高测量有效性。常用的计划缺失设计有三式设计和两种方法测量。  相似文献   

7.
Data in psychology are often collected using Likert‐type scales, and it has been shown that factor analysis of Likert‐type data is better performed on the polychoric correlation matrix than on the product‐moment covariance matrix, especially when the distributions of the observed variables are skewed. In theory, factor analysis of the polychoric correlation matrix is best conducted using generalized least squares with an asymptotically correct weight matrix (AGLS). However, simulation studies showed that both least squares (LS) and diagonally weighted least squares (DWLS) perform better than AGLS, and thus LS or DWLS is routinely used in practice. In either LS or DWLS, the associations among the polychoric correlation coefficients are completely ignored. To mend such a gap between statistical theory and empirical work, this paper proposes new methods, called ridge GLS, for factor analysis of ordinal data. Monte Carlo results show that, for a wide range of sample sizes, ridge GLS methods yield uniformly more accurate parameter estimates than existing methods (LS, DWLS, AGLS). A real‐data example indicates that estimates by ridge GLS are 9–20% more efficient than those by existing methods. Rescaled and adjusted test statistics as well as sandwich‐type standard errors following the ridge GLS methods also perform reasonably well.  相似文献   

8.
Researchers have developed missing data handling techniques for estimating interaction effects in multiple regression. Extending to latent variable interactions, we investigated full information maximum likelihood (FIML) estimation to handle incompletely observed indicators for product indicator (PI) and latent moderated structural equations (LMS) methods. Drawing on the analytic work on missing data handling techniques in multiple regression with interaction effects, we compared the performance of FIML for PI and LMS analytically. We performed a simulation study to compare FIML for PI and LMS. We recommend using FIML for LMS when the indicators are missing completely at random (MCAR) or missing at random (MAR) and when they are normally distributed. FIML for LMS produces unbiased parameter estimates with small variances, correct Type I error rates, and high statistical power of interaction effects. We illustrated the use of these methods by analyzing the interaction effect between advanced cancer patients’ depression and change of inner peace well-being on future hopelessness levels.  相似文献   

9.
Test of homogeneity of covariances (or homoscedasticity) among several groups has many applications in statistical analysis. In the context of incomplete data analysis, tests of homoscedasticity among groups of cases with identical missing data patterns have been proposed to test whether data are missing completely at random (MCAR). These tests of MCAR require large sample sizes n and/or large group sample sizes n i , and they usually fail when applied to nonnormal data. Hawkins (Technometrics 23:105–110, 1981) proposed a test of multivariate normality and homoscedasticity that is an exact test for complete data when n i are small. This paper proposes a modification of this test for complete data to improve its performance, and extends its application to test of homoscedasticity and MCAR when data are multivariate normal and incomplete. Moreover, it is shown that the statistic used in the Hawkins test in conjunction with a nonparametric k-sample test can be used to obtain a nonparametric test of homoscedasticity that works well for both normal and nonnormal data. It is explained how a combination of the proposed normal-theory Hawkins test and the nonparametric test can be employed to test for homoscedasticity, MCAR, and multivariate normality. Simulation studies show that the newly proposed tests generally outperform their existing competitors in terms of Type I error rejection rates. Also, a power study of the proposed tests indicates good power. The proposed methods use appropriate missing data imputations to impute missing data. Methods of multiple imputation are described and one of the methods is employed to confirm the result of our single imputation methods. Examples are provided where multiple imputation enables one to identify a group or groups whose covariance matrices differ from the majority of other groups.  相似文献   

10.
The posterior distribution of the bivariate correlation is analytically derived given a data set wherex is completely observed buty is missing at random for a portion of the sample. Interval estimates of the correlation are then constructed from the posterior distribution in terms of highest density regions (HDRs). Various choices for the form of the prior distribution are explored. For each of these priors, the resulting Bayesian HDRs are compared with each other and with intervals derived from maximum likelihood theory.  相似文献   

11.
To assess the effect of a manipulation on a response time distribution, psychologists often use Vincentizing or quantile averaging to construct group or “average” distributions. We provide a theorem characterizing the large sample properties of the averaged quantiles when the individual RT distributions all belong to the same location-scale family. We then apply the theorem to estimating parameters for the quantile-averaged distributions. From the theorem, it is shown that parameters of the group distribution can be estimated by generalized least squares. This method provides accurate estimates of standard errors of parameters and can therefore be used in formal inference. The method is benchmarked in a small simulation study against both a maximum likelihood method and an ordinary least-squares method. Generalized least squares essentially is the only method based on the averaged quantiles that is both unbiased and provides accurate estimates of parameter standard errors. It is also proved that for location-scale families, performing generalized least squares on quantile averages is formally equivalent to averaging parameter estimates from generalized least squares performed on individuals. A limitation on the method is that individual RT distributions must be members of the same location-scale family.  相似文献   

12.
Ke-Hai Yuan 《Psychometrika》2009,74(2):233-256
When data are not missing at random (NMAR), maximum likelihood (ML) procedure will not generate consistent parameter estimates unless the missing data mechanism is correctly modeled. Understanding NMAR mechanism in a data set would allow one to better use the ML methodology. A survey or questionnaire may contain many items; certain items may be responsible for NMAR values in other items. The paper develops statistical procedures to identify the responsible items. By comparing ML estimates (MLE), statistics are developed to test whether the MLEs are changed when excluding items. The items that cause a significant change of the MLEs are responsible for the NMAR mechanism. Normal distribution is used for obtaining the MLEs; a sandwich-type covariance matrix is used to account for distribution violations. The class of nonnormal distributions within which the procedure is valid is provided. Both saturated and structural models are considered. Effect sizes are also defined and studied. The results indicate that more missing data in a sample does not necessarily imply more significant test statistics due to smaller effect sizes. Knowing the true population means and covariances or the parameter values in structural equation models may not make things easier either. The research was supported by NSF grant DMS04-37167, the James McKeen Cattell Fund.  相似文献   

13.
A direct method in handling incomplete data in general covariance structural models is investigated. Asymptotic statistical properties of the generalized least squares method are developed. It is shown that this approach has very close relationships with the maximum likelihood approach. Iterative procedures for obtaining the generalized least squares estimates, the maximum likelihood estimates, as well as their standard error estimates are derived. Computer programs for the confirmatory factor analysis model are implemented. A longitudinal type data set is used as an example to illustrate the results.This research was supported in part by Research Grant DAD1070 from the U.S. Public Health Service. The author is indebted to anonymous reviewers for some very valuable suggestions. Computer funding is provided by the Computer Services Centre, The Chinese University of Hong Kong.  相似文献   

14.
A maximum likelihood procedure for combining standardized mean differences based on a noncentratt-distribution is proposed. With a proper data augmentation technique, an EM-algorithm is developed. Information and likelihood ratio statistics are discussed in detail for reliable inference. Simulation results favor the proposed procedure over both the existing normal theory maximum likelihood procedure and the commonly used generalized least squares procedure.  相似文献   

15.
A general latent variable model is given which includes the specification of a missing data mechanism. This framework allows for an elucidating discussion of existing general multivariate theory bearing on maximum likelihood estimation with missing data. Here, missing completely at random is not a prerequisite for unbiased estimation in large samples, as when using the traditional listwise or pairwise present data approaches. The theory is connected with old and new results in the area of selection and factorial invariance. It is pointed out that in many applications, maximum likelihood estimation with missing data may be carried out by existing structural equation modeling software, such as LISREL and LISCOMP. Several sets of artifical data are generated within the general model framework. The proposed estimator is compared to the two traditional ones and found superior.The research of the first author was supported by grant No. SES-8312583 from the National Science Foundation and by a Spencer Foundation grant. We wish to thank Chuen-Rong Chan for drawing the path diagram.  相似文献   

16.
A unifying framework for generalized multilevel structural equation modeling is introduced. The models in the framework, called generalized linear latent and mixed models (GLLAMM), combine features of generalized linear mixed models (GLMM) and structural equation models (SEM) and consist of a response model and a structural model for the latent variables. The response model generalizes GLMMs to incorporate factor structures in addition to random intercepts and coefficients. As in GLMMs, the data can have an arbitrary number of levels and can be highly unbalanced with different numbers of lower-level units in the higher-level units and missing data. A wide range of response processes can be modeled including ordered and unordered categorical responses, counts, and responses of mixed types. The structural model is similar to the structural part of a SEM except that it may include latent and observed variables varying at different levels. For example, unit-level latent variables (factors or random coefficients) can be regressed on cluster-level latent variables. Special cases of this framework are explored and data from the British Social Attitudes Survey are used for illustration. Maximum likelihood estimation and empirical Bayes latent score prediction within the GLLAMM framework can be performed using adaptive quadrature in gllamm, a freely available program running in Stata.gllamm can be downloaded from http://www.gllamm.org. The paper was written while Sophia Rabe-Hesketh was employed at and Anders Skrondal was visiting the Department of Biostatistics and Computing, Institute of Psychiatry, King's College London.  相似文献   

17.
In the applied context, short time-series designs are suitable to evaluate a treatment effect. These designs present serious problems given autocorrelation among data and the small number of observations involved. This paper describes analytic procedures that have been applied to data from short time series, and an alternative which is a new version of the generalized least squares method to simplify estimation of the error covariance matrix. Using the results of a simulation study and assuming a stationary first-order autoregressive model, it is proposed that the original observations and the design matrix be transformed by means of the square root or Cholesky factor of the inverse of the covariance matrix. This provides a solution to the problem of estimating the parameters of the error covariance matrix. Finally, the results of the simulation study obtained using the proposed generalized least squares method are compared with those obtained by the ordinary least squares approach. The probability of Type I error associated with the proposed method is close to the nominal value for all values of rho1 and n investigated, especially for positive values of rho1. The proposed generalized least squares method corrects the effect of autocorrelation on the test's power.  相似文献   

18.
追踪研究中缺失数据十分常见。本文通过Monte Carlo模拟研究,考察基于不同前提假设的Diggle-Kenward选择模型和ML方法对增长参数估计精度的差异,并考虑样本量、缺失比例、目标变量分布形态以及不同缺失机制的影响。结果表明:(1)缺失机制对基于MAR的ML方法有较大的影响,在MNAR缺失机制下,基于MAR的ML方法对LGM模型中截距均值和斜率均值的估计不具有稳健性。(2)DiggleKenward选择模型更容易受到目标变量分布偏态程度的影响,样本量与偏态程度存在交互作用,样本量较大时,偏态程度的影响会减弱。而ML方法仅在MNAR机制下轻微受到偏态程度的影响。  相似文献   

19.
The normal theory based maximum likelihood procedure is widely used in structural equation modeling. Three alternatives are: the normal theory based generalized least squares, the normal theory based iteratively reweighted least squares, and the asymptotically distribution-free procedure. When data are normally distributed and the model structure is correctly specified, the four procedures are asymptotically equivalent. However, this equivalence is often used when models are not correctly specified. This short paper clarifies conditions under which these procedures are not asymptotically equivalent. Analytical results indicate that, when a model is not correct, two factors contribute to the nonequivalence of the different procedures. One is that the estimated covariance matrices by different procedures are different, the other is that they use different scales to measure the distance between the sample covariance matrix and the estimated covariance matrix. The results are illustrated using real as well as simulated data. Implication of the results to model fit indices is also discussed using the comparative fit index as an example. The work described in this paper was supported by a grant from the Research Grants Council of Hong Kong Special Administrative Region (Project No. CUHK 4170/99M) and by NSF grant DMS04-37167.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号