首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Numerous studies implicate superior temporal sulcus (STS) in the perception of human movement. More recent theories hold that STS is also involved in the understanding of human movement. However, almost no studies to date have associated STS function with observable variability in action understanding. The present study directly associated STS activity with performance on a challenging task requiring the interpretation of human movement. During functional MRI scanning, fourteen adults were asked to identify the direction (left or right) in which either a point-light walking figure or spinning wheel were moving. The task was made challenging by perturbing the dot trajectories to a level (determined via pretesting) where each participant achieved 72% accuracy. The walking figure condition was associated with increased activity in a constellation of social information processing and biological motion areas, including STS, MT+/V5, right pars opercularis (inferior frontal gyrus), fusiform gyrus, and amygdala. Correctly answered walking figure trials were uniquely associated with increased activity in two right hemisphere STS clusters and right amygdala. Present findings provide some of the strongest evidence to date that STS plays a critical role in the successful interpretation of human movement.  相似文献   

2.
ABSTRACT— Humans are an intensely social species. Our social abilities depend upon specialized brain systems for rapidly recognizing the faces of others, for interpreting the actions of others through an analysis of biological-motion cues, and for determining the emotional states of others via inspection of facial expression. Recent work has implicated the superior temporal sulcus (STS) region as an important component of the social brain. Functional neuroimaging studies have provided clues about how this region is involved in the visual analysis and interpretation of other people's actions. STS activity is modulated by the context within which the actions of biological entities are observed. Such a contextual influence is consistent with a broader tradition within social psychology emphasizing the powerful influences of situational and contextual factors on behavior and perception. The STS region also shows promise as a region of importance in the investigation of both typical and impaired social-cognitive development. Future work should aim to inform us better of the development of interrelationships between the STS region and other regions of the social brain, including the amygdala and the fusiform gyrus.  相似文献   

3.
Neural activity associated with self-referential processing of emotional stimuli was investigated using whole brain functional magnetic resonance imaging (fMRI). Fifteen healthy subjects underwent fMRI scanning while making judgments about positive and negative trait words in four conditions (self-reference, other-reference, semantic processing, and letter processing). Significant activity was observed in the right ventral anterior cingulate gyrus and the right amygdala in the negative-word/self-reference condition, and in the left amygdala in the positive-word/self-reference condition. Compared with the semantic-processing condition, the self-reference conditions showed significantly more activity in the medial prefrontal and temporal gyri, posterior cingulate gyrus, and precuneus. These results suggest that the medial prefrontal gyrus, posterior cingulate gyrus, and precuneus are associated with a self-referential processing, and the ventral anterior cingulate gyrus is involved in self-referential processing of negative emotional stimuli. The results also suggest that the amygdala is associated with self-referential processing of both positive and negative emotional stimuli.  相似文献   

4.
Brain activation associated with anhedonic depression and co-occurring anxious arousal and anxious apprehension was measured by fMRI during performance of an emotion word Stroop task. Consistent with EEG findings, depression was associated with rightward frontal lateralization in the dorsolateral prefrontal cortex (DLPFC), but only when anxious arousal was elevated and anxious apprehension was low. Activity in the right inferior frontal gyrus (IFG) was also reduced for depression under the same conditions. In contrast, depression was associated with more activity in the anterior cingulate cortex (dorsal ACC and rostral ACC) and the bilateral amygdala. Results imply that depression, particularly when accompanied by anxious arousal, may result in a failure to implement top-down processing by appropriate brain regions (left DLPFC, right IFG) due to increased activation in regions associated with responding to emotionally salient information (right DLPFC, amygdala).  相似文献   

5.

Introduction

Adaptation to changing situations can be mediated by two strategies: (1) Evaluation of a response and (2) Evaluation of outcome values in relation to objects. Previous studies indicate that response shifting is associated with a network comprising the left frontal cortex and parietal cortex connected by the superior longitudinal fascicle, whereas outcome evaluation is associated with a network consisting of the orbitofrontal cortex, amygdala and uncinate fascicle. However, these studies rarely compared both kinds of adaptation directly and existing fMRI studies with healthy subjects are not informative about the role of the two fiber systems.

Methods

We analyzed stimulus response shifting and stimulus outcome shifting in two studies, one fMRI-study on healthy participants and one study on patients with MS involving structural MRI (Diffusion Tensor Imaging, Voxel Based Morphometry, Ventricular volumetry). Two tasks were used, identical in presentation but different in instruction, controlling for effects of lower level processing. In the SRS task, participants had to perform a “Go” or “NoGo” response depending on a stimulus change: if the stimulus remained the same, they had to continue with the former type of response, if it changed they had to adapt their response pattern. In the SOS task they had to perform a “Go” response only if the presented stimulus corresponded to that of an internal alternating series.

Results

fMRI findings showed that SRS is related to a bilateral parietal-premotor network. In the left hemisphere the prefrontal cortex was also involved. SOS was lateralized to the right hemisphere, particularly to the anterior temporal pole and amygdala, and the inferior parietal cortex. MS patients impaired on this task suffered from lesions in the right uncinate fascicle and showed an enlarged right frontal lateral ventricle.

Conclusion

With physically identical tasks, a functional neuronal segregation can be demonstrated for stimulus response shifting (bilateral activations with a focus in the left prefrontal cortex) and stimulus outcome shifting (right anterior temporal lobe and right supramarginal gyrus).  相似文献   

6.
The purpose of this study was to investigate whether the dual task paradigm would influence arm movements during walking. Furthermore, we examined the effects of different walking surfaces on arm movements while performing dual tasks. The effects of age and gender were also investigated. Fifteen young adults and 15 older adults were included in this study. Subjects were asked to perform the walking task alone (single-task trial) and walking in combination with a cognitive task (dual-task trial). Four walking conditions (1 single task and 3 dual task trials)×two walking surfaces were encountered. Both age groups had greater elbow and trunk movement in the sagittal plane under the dual task trials as compared to the single task trial (p<.05). Subjects had greater upper extremity and upper body movement on the soft floor than on the hard floor (p<.05). Subjects had greater movement amplitude when confronting a challenging environment, especially in the contralateral side. Among gender, there was a group-gender interaction: the older females had smaller upper extremity movement than the older males (p<.05) but the opposite was true for the young adults. The results suggest that different age groups of males and females use different balance control strategy to deal with the challenging conditions.  相似文献   

7.
Driving is a cognitively challenging task, and many individuals with autism spectrum disorder (ASD) or with attention-deficit/hyperactivity disorder (ADHD) struggle to drive safely and effectively. Previous evidence suggests that core neuropsychological deficits in executive functioning (EF) and theory of mind (ToM) may impact driving in ASD and ADHD. This functional magnetic resonance imaging (fMRI) study compares the brain mechanisms underlying ToM and EF during a hazard perception driving task. Forty-six licensed drivers (14 ASD, 17 ADHD, 15 typically developing (TD)), ages 16–27 years, viewed a driving scenario in the MRI scanner and were instructed to respond to driving hazards that were either “social” (contained a human component such as a pedestrian) or “nonsocial” (physical objects such as a barrel). All groups of participants recruited regions part of the “social brain” (anterior insula, angular gyrus, right middle occipital gyrus, right cuneus/precuneus, and right inferior frontal gyrus) when processing social hazards, and regions associated with motor planning and object recognition (postcentral gyrus, precentral gyrus, and supplementary motor area) when processing nonsocial hazards. While there were no group differences in brain activation during the driving task, years licensed was predictive of greater prefrontal and temporal activation to social hazards in all participants. Findings of the current study suggest that high-functioning ASD and ADHD licensed drivers may be utilizing similar cognitive resources as TD controls for decisions related to driving-related hazard detection.  相似文献   

8.
Using functional magnetic resonance imaging (fMRI), we investigated brain activity evoked by mutual and averted gaze in a compelling and commonly experienced social encounter. Through virtual-reality goggles, subjects viewed a man who walked toward them and shifted his neutral gaze either toward (mutual gaze) or away (averted gaze) from them. Robust activity was evoked in the superior temporal sulcus (STS) and fusiform gyrus (FFG). For both conditions, STS activity was strongly right lateralized. Mutual gaze evoked greater activity in the STS than did averted gaze, whereas the FFG responded equivalently to mutual and averted gaze. Thus, we show that the STS is involved in processing social information conveyed by shifts in gaze within an overtly social context. This study extends understanding of the role of the STS in social cognition and social perception by demonstrating that it is highly sensitive to the context in which a human action occurs.  相似文献   

9.
Dancing is characterised by physical movement in accordance with rhythm perception. Twelve sport dancers and 12 age- and sex-matched young adults who had no dance experience (control group) were recruited. Body intelligence and brain activity were assessed in both groups using the Body Intelligence Scale (BIS) and resting state functional magnetic resonance imaging. BIS scores of dancers were higher than those of control subjects. The dancer group showed increased functional connectivity from the precentral gyrus to the right cingulate gyrus, right occipital fusiform gyrus, right inferior frontal gyrus, right medial frontal gyrus, left inferior frontal gyrus, right parietal postcentral gyrus, and right frontal lobe compared with control subjects. Sport dancers had increased body intelligence sensitivity compared with matched controls. In addition, the characteristics of dance, including physical movement in accordance with rhythm perception, might be associated with increased brain activity in the somatosensory and rhythm perception networks.  相似文献   

10.
Emotion regulation can be achieved in various ways, but few studies have evaluated the extent to which the neurocognitive substrates of these distinct operations overlap. In the study reported here, functional magnetic resonance imaging (fMRI) was used to measure activity in the amygdala and prefrontal cortex of 10 participants who completed two independent tasks of emotion regulation-reappraisal, measuring intentional emotion regulation, and affect labeling, measuring incidental emotion regulation-with the objective of identifying potential overlap in the neural substrates underlying each task. Analyses focused on a priori regions of interest in the amygdala and inferior frontal gyrus (IFG). For both tasks, fMRI showed decreased amygdala activation during emotion regulation compared with emotion conditions. During reappraisal, this decrease in amygdala activation was accompanied by a proportional decrease in emotional intensity ratings; during affect labeling, the decrease in amygdala activation correlated with self-reported aggression. Importantly, across participants, the magnitude of decrease in amygdala activation during reappraisal correlated with the magnitude of decrease during affect labeling, even though the tasks were administered on separate days, and values indexing amygdala activation during each task were extracted independently of one another. In addition, IFG-amygdala connectivity, assessed via psychophysiological interaction analysis, overlapped between tasks in two regions within the right IFG. The results suggest that the two tasks recruit overlapping regions of prefrontal cortex, resulting in similar reductions in amygdala activation, regardless of the strategy employed. Intentional and incidental forms of emotion regulation, despite their phenomenological differences, may therefore converge on a common neurocognitive pathway.  相似文献   

11.
Fujimoto K 《Perception》2003,32(10):1273-1277
A new type of motion illusion is described in which ambiguous motion becomes unidirectional on superimposition of a human figure walking on a treadmill. A point-light walker in profile was superimposed on a vertical counterphase grating backdrop. Eleven na?ve observers judged the apparent direction of motion against the grating as left or right in a two-alternative forced-choice task and found that the grating appeared to drift in a direction opposite to the walking. The illusion disappeared when the point lights moved in scrambled configurations. This indicates that the illusion is caused by biological motion that provides recognition of gaits. A human figure walking backwards produced no illusion because of the difficulty in identifying the gait. This indicates that the illusion is determined by translational motion rather than form represented from biological motion.  相似文献   

12.
Psychosocial resources have been tied to lower psychological and biological responses to stress. The present research replicated this relationship and extended it by examining how differences in dispositional reactivity of certain neural structures may underlie this relationship. Two hypotheses were examined: (a) psychosocial resources are tied to decreased sensitivity to threat and/or (b) psychosocial resources are associated with enhanced prefrontal inhibition of threat responses during threat regulation. Results indicated that participants with greater psychosocial resources exhibited significantly less cortisol reactivity following a stress task, as predicted. Analyses using functional magnetic resonance imaging revealed that psychosocial resources were associated with greater right ventrolateral prefrontal cortex and less amygdala activity during a threat regulation task but were not associated with less amygdala activity during a threat sensitivity task. Mediational analyses suggest that the relation of psychosocial resources to low cortisol reactivity was mediated by lower amygdala activity during threat regulation. Results suggest that psychosocial resources are associated with lower cortisol responses to stress by means of enhanced inhibition of threat responses during threat regulation, rather than by decreased sensitivity to threat.  相似文献   

13.
Recent anatomo‐clinical correlation studies have extended to the superior temporal gyrus, the right hemisphere lesion sites associated with the left unilateral spatial neglect, in addition to the traditional posterior‐inferior‐parietal localization of the responsible lesion (supramarginal gyrus, at the temporo‐parietal junction). The study aimed at teasing apart, by means of repetitive transcranial magnetic stimulation (rTMS), the contribution of the inferior parietal lobule (angular gyrus versus supramarginal gyrus) and of the superior temporal gyrus of the right hemisphere, in making judgments about the mid‐point of a horizontal line, a widely used task for detecting and investigating spatial neglect. rTMS trains at 25 Hz frequency were delivered over the inferior parietal lobule (angular gyrus and supramarginal gyrus), the superior temporal gyrus and the anterior parietal lobe of the right hemisphere, in 10 neurologically unimpaired participants, performing a line bisection judgment task. rTMS of the inferior parietal lobule at the level of the supramarginal gyrus brought about a rightward error in the bisection judgment, ipsilateral to the side of the rTMS, with stimulation over the other sites being ineffective. The neural correlates of computing the mid‐point of a horizontal segment include the right supramarginal gyrus in the inferior parietal lobule and do not extend to the angular gyrus and the superior temporal gyrus. These rTMS data in unimpaired subjects constrain the evidence from lesion studies in brain‐damaged patients, emphasizing the major role of a subset of relevant regions.  相似文献   

14.
曹晓华  曹立人 《心理学报》2009,41(3):242-248
本研究探讨图形识别学习和再认中取样的时间进程及其策略。被试为24名大学生,刺激材料为20个不规则无意义几何图形,以EyelinkII型眼动仪为主要实验设备。结果发现:显示方式和反馈条件显著影响图形再认期间的取样时间进程;图形学习时和再认时取样首视点的时间和空间方位具有显著相关,具有时空的一致性;反馈条件对取样策略调整主要体现在增加取样点数目、固定中等取样路径、增加取样点时间和减少取样辅助操作等方面;即时反馈提示显著影响再认时的取样,但是对学习时的取样影响不显著  相似文献   

15.
The Satisfaction with Travel Scale (STS) has recently been developed to measure people’s satisfaction with travel. It supposedly consists of two affective and one cognitive dimension. As there have only been a few tests of its reliability and structure to date, this paper reports new tests using data on leisure trips from Ghent (Belgium). Differences in the reliability and structure of the STS by transport mode – car, public transport, bicycling and walking – are also considered. Overall, the results suggest that the specification of a single underlying dimension for affect rather than two offers a superior fit to the Ghent data, both for all modes combined and for car use and cycling separately. For public transport and walking a three-dimensional structure is more appropriate although individuals items do not load on the two affective dimensions as expected. Differences between previous studies and ours are partly caused by differences in how two of the scale’s items – alert/tired and confident/worried – are correlated with the other items. Future studies using the STS may want to adapt the structure of STS by omitting some items or replacing them with alternatives as this may reduce respondent burden and increase internal consistency of the STS.  相似文献   

16.
The aim of this study was to investigate interlimb coordination in young and older adults with and without a history of falls during the combined task of walking and prehension with different levels of manual task difficulty. Participants walked on a pathway and grasped a dowel. A vector coding technique evaluated coordination patterns. The coordination pattern was not affected by the difficulty level of the manual task. Older adults seemed to prioritize the movement of the right shoulder to grasp the dowel and then ‘froze’ the movement of the other joint (left shoulder) not directly involved in the grasping task. The preference to pick up the dowel in the double support phase and the increase in right shoulder phase made by older adults with a history of falls suggests an even greater decoupling between walking and prehension.  相似文献   

17.
Dynamic and cognitive multi-tasking might affect balance and walking negatively and increase risk of falling. Trunk movement control is critical for balance maintenance and fall-prevention. The impact of multi-tasking on trunk movement control has not been thoroughly studied. In a challenging dynamic multi-tasking condition such as walking and obstacle avoidance, presence of a cognitive task not only increases risk of tripping but also may increase risk of falling by deteriorating trunk control. Our objective was to investigate the impacts of a challenging dynamic and cognitive multi-tasking condition (walking + obstacle avoidance + cognitive task) on trunk kinematics and kinetics and compare those with other joints/segments. Trunk, pelvis, hip, knee, and ankle kinematics and kinetics of 12 young adults were compared between joints/segments and conditions. During walking and obstacle avoidance (dynamic multi-tasking), the trunk had the largest normalized increase in peak flexion angle and extension torque compared to walking, among the other joints/segments. The presence of a cognitive task during walking and obstacle avoidance (dynamic and cognitive multi-tasking) did not impact any of the joints/segments biomechanics except the trunk peak extension torque that was increased. Furthermore, trunk kinematics showed the largest residual differences (post-effects) in 3 cycles after obstacle avoidance compared to walking. The presence of a cognitive task (dynamic and cognitive multi-tasking) did not impact the post-effects of obstacle avoidance on any joints/segments except the trunk with its residual difference from normal walking further increased. These results suggest that a cognitive task deteriorates trunk control and interferes with the ability to regain normal trunk biomechanics after obstacle avoidance. In summary, the trunk requires the largest biomechanical adjustments in a challenging dynamic and cognitive multi-tasking condition where there is a risk of falling. Our study provides baseline results suggesting that trunk control demands more attention and is more negatively affected by dynamic and cognitive multi-tasking. Our results raise a concern for elderly population as their trunk control is already impaired and common daily multi-tasking could further deteriorate their trunk control and increase fall risk.  相似文献   

18.
Oppositional defiant disorder (ODD) and conduct disorder (CD) are common behavioural disorders in childhood and adolescence and are associated with brain abnormalities. This systematic review and meta-analysis investigates structural (sMRI) and functional MRI (fMRI) findings in individuals with ODD/CD with and without attention-deficit hyperactivity disorder (ADHD). Online databases were searched for controlled studies, resulting in 12 sMRI and 17 fMRI studies. In line with current models on ODD/CD, studies were classified in hot and cool executive functioning (EF). Both the meta-analytic and narrative reviews showed evidence of smaller brain structures and lower brain activity in individuals with ODD/CD in mainly hot EF-related areas: bilateral amygdala, bilateral insula, right striatum, left medial/superior frontal gyrus, and left precuneus. Evidence was present in both structural and functional studies, and irrespective of the presence of ADHD comorbidity. There is strong evidence that abnormalities in the amygdala are specific for ODD/CD as compared to ADHD, and correlational studies further support the association between abnormalities in the amygdala and ODD/CD symptoms. Besides the left precuneus, there was no evidence for abnormalities in typical cool EF related structures, such as the cerebellum and dorsolateral prefrontal cortex. Resulting areas are associated with emotion-processing, error-monitoring, problem-solving and self-control; areas associated with neurocognitive and behavioural deficits implicated in ODD/CD. Our findings confirm the involvement of hot, and to a smaller extent cool, EF associated brain areas in ODD/CD, and support an integrated model for ODD/CD (e.g. Blair, Development and Psychopathology, 17(3), 865-891, 2005).  相似文献   

19.
Pessoa and colleagues recently reported the novel finding that objective awareness of a negative stimulus is associated with coactivation of the amygdala and fusiform gyrus. Based on the neuroanatomical connections of the amygdala, we suggest that the amygdala is acting to increase neural activity in the fusiform gyrus, thereby increasing the likelihood that visual representations that have affective value reach awareness. The psychological consequence is that a person's momentary affective state might help to select the contents of conscious experience.  相似文献   

20.
Previous studies reported changes in spatiotemporal gait parameters during dual-task performance while walking using a smartphone compared to walking without a smartphone. However, studies that assess muscle activity while walking and simultaneously performing smartphone tasks are scarce. So, this study aimed to assess the effects of motor and cognitive tasks using a smartphone while simultaneously performing gait on muscle activity and gait spatiotemporal parameters in healthy young adults. Thirty young adults (22.83 ± 3.92 years) performed five tasks: walking without a smartphone (single-task, ST); typing on a smartphone keyboard in a sitting position (secondary motor single-task); performing a cognitive task on a smartphone in a sitting position (cognitive single-task); walking while typing on a smartphone keyboard (motor dual-task, mot-DT) and walking while performing a cognitive task on a smartphone (cognitive dual-task, cog-DT). Gait speed, stride length, stride width and cycle time were collected using an optical motion capture system coupled with two force plates. Muscle activity was recorded using surface electromyographic signals from bilateral biceps femoris, rectus femoris, tibialis anterior, gastrocnemius medialis, gastrocnemius lateralis, gluteus maximus and lumbar erector spinae. Results showed a decrease in stride length and gait speed from the single-task to cog-DT and mot-DT (p < 0.05). On the other hand, muscle activity increased in most muscles analyzed from single- to dual-task conditions (p < 0.05). In conclusion, performing a cognitive or motor task using a smartphone while walking promote a decline in spatiotemporal gait parameters performance and change muscle activity pattern compared to normal walking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号