首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies of age-related differences in manual aiming have indicated that older adults take longer to complete their movements than their younger counterparts because they tend to rely on time-consuming feedback-based control processes. Many authors have suggested that the reliance on feedback is the result of a "play-it-safe" strategy that has been adopted to compensate for a deterioration in accurate and consistent force generation. That is, perhaps because older adults know that their motor systems are not as reliable as the systems were at a younger age, they plan shorter movements that conserve time and space for feedback control to correct their programmed actions. The vast majority of the previous studies that have revealed these age-related differences in aiming, however, have used computer-based tasks that involve the transformation of perceptual into motor space. In the present experiment, older and younger adults completed real aiming movements over three sessions. The results suggest that, when acting in a real environment, the main difference between older and younger adults in movement execution lies in the efficient use of response-related feedback, not in the programming of movement.  相似文献   

2.
In the present work, we first clarify a more precise definition of instantaneous optical angles in control tasks such as interception. We then test how well two interceptive strategies that have been proposed for catching fly balls account for human Frisbee-catching behavior. The first strategy is to maintain the ball's image along a linear optical trajectory (LOT). The second is to keep vertical optical ball velocity decreasing while maintaining constant lateral optical velocity. We found that an LOT accounted for an average of over 96% of the variance in optical Frisbee movement, while maintenance of vertical and lateral optical velocities was random. This work confirms a common interception strategy used across interceptive tasks, extending to complex target trajectories.  相似文献   

3.
Most research on visual search in aiming at far targets assumes preprogrammed motor control implying that relevant visual information is detected prior to the final shooting or throwing movements. Eye movement data indirectly support this claim for stationary tasks. Using the basketball jump shot as experimental task we investigated whether in dynamic tasks in which the target can be seen until ball release, continuous, instead of preprogrammed, motor control is possible. We tested this with the temporal occlusion paradigm: 10 expert shooters took shots under four viewing conditions, namely, no vision, full vision, early vision (vision occluded during the final +/-350 ms before ball release), and late vision (vision occluded until these final +/-350 ms). Late-vision shooting appeared to be as good as shooting with full vision while early-vision performance was severely impaired. The results imply that the final shooting movements were controlled by continuous detection and use of visual information until ball release. The data further suggest that visual and movement control of aiming at a far target develop in close correspondence with the style of execution.  相似文献   

4.
Successful interception relies on the use of perceptual information to accurately guide an efficient movement strategy that allows performers to be placed at the right place at the right time. Although previous studies have highlighted the differences in the timing and coordination of movement that underpin interceptive expertise, very little is known about how these movement patterns are adapted when intercepting targets that follow a curvilinear flight-path. The aim of this study was to examine how curvilinear ball-trajectories influence movement patterns when intercepting a fast-moving target. Movement timing and coordination was examined when four groups of cricket batters, who differed in their skill level and/or age, hit targets that followed straight or curvilinear flight-paths. The results revealed that when compared to hitting straight trials, (i) mixing straight with curvilinear trials altered movement coordination and when the ball was hit, (ii) curvilinear trajectories reduced interceptive performance and significantly delayed the timing of all kinematic moments, but there were (iii) larger decrease in performance when the ball swung away from (rather than in towards) the performer. Movement coordination differed between skill but not age groups, suggesting that skill-appropriate movement patterns that are apparent in adults may have fully emerged by late adolescence.  相似文献   

5.
In 3 experiments, the authors investigated and described how individuals control manual interceptive movements to slowly moving targets. Participants (N = 8 in each experiment) used a computer mouse and a graphics tablet assembly to manually intercept targets moving across a computer screen toward a marked target zone. They moved the cursor so that it would arrive in the target zone simultaneously with the target. In Experiment 1, there was a range of target velocities, including some very slow targets. In Experiment 2, there were 2 movement distance conditions. Participants moved the cursor either the same distance as the target or twice as far. For both experiments, hand speed was found to be related to target speed, even for the very slowly moving targets and when the target-to-cursor distance ratios were altered, suggesting that participants may have used a strategy similar to tracking. To test that notion, in Experiment 3, the authors added a tracking task in which the participants tracked the target cursor into the target zone. Longer time was spent planning the interception movements; however, there was a longer time in deceleration for the tracking movements, suggesting that more visually guided trajectory updates were made in that condition. Thus, although participants scaled their interception movements to the cursor speed, they were using a different strategy than they used in tracking. It is proposed that during target interception, anticipatory mechanisms are used rather than the visual feedback mechanism used when tracking and when pointing to stationary targets.  相似文献   

6.
Detailed quantitative models are required to investigate the neurological basis of motor behavior. Previous studies of visually guided manual tracking have either identified a variety of control signals (cues) for planning tracking movements or analyzed how a single cue is used (i.e., one-tracking strategy). A systematic, quantitative analysis of the effects and interactions of cues in terms of human manual-tracking performance is presented here together with measurements of concomitant eye movements. These measurements help define the routes by which information reaches the CNS, and the analysis elucidates how the control signals are processed and combined. The results quantify not only the large improvement in performance observed when the target waveform being tracked is predictable but also the extent to which this improvement depends on the availability of current information about target movements and positional error. Target information is shown to provide short-term prediction independent of the error signals used in on-line negative feedback control.  相似文献   

7.
This longitudinal study investigated the development of reaching in typical infants, from age 4 to 8 months, and described the pattern of hand kinematics underlying changes in the characteristics of infants’ actions while reaching for a target. Thirteen infants were followed biweekly. Two reaching behaviors emerged during the infants’ free interactions with the target, touching and hitting. Changes over time were documented for the number of movement units, straightness index, distance, peak velocity and time to peak velocity of the hand for touches and hits. We observed increases in the numbers of touches and hits and changes in hand kinematics over time; the distance traveled by the hand was greater for hitting compared to touching. These kinematic changes were specific to the movement patterns that infants adopted to reach to the target.  相似文献   

8.
Spatial topological constraints in a bimanual task.   总被引:11,自引:0,他引:11  
Previous research has shown that the concurrent performance of two manual tasks results in a tight temporal coupling of the limbs. The intent of the present experiment was to investigate whether a similar coupling exists in the spatial domain. Subjects produced continuous drawing of circles and lines, one task at a time or bimanually, for a 20 s trial. In bimanual conditions in which subjects produced the circle task with one hand and the line task with the other, there was a clear tendency for the movement path of the circle task to become more line-like and the movement path of the line task to become more circle-like, i.e., a spatial magnet effect. A bimanual circle task and a bimanual line task did not exhibit changes in the movement path when compared to single-hand controls. In all bimanual conditions, the hands were tightly temporally locked. The evidence of temporal coupling and concomitant accommodation in the movement path for the conditions in which the hands were producing different shapes suggests that spatial constraints play a role in the governance of bimanual coordinated actions.  相似文献   

9.
Investigation of manual actions has supported the proposition that the right and left cerebral hemispheres have complementary specializations relevant for movement control. To test the extent to which hemisphere specialization affect lower limb control, we compared performance between the legs in two motor tasks. A pedal aiming task was employed to test the notion of left hemisphere specialization for dynamic control, and unipedal balance was employed to test the notion of right hemisphere specialization for impedance control. Evaluation was conducted on young adults, in the contexts of separate (Experiment 1) and integrated (Experiment 2) performance of the probing tasks. Results from the aiming task showed equivalent movement linearity toward the target between the right and left feet across experiments. Analysis of unipedal balance revealed that increased stance stability when supported on the left leg was observed when performing simultaneously the aiming task with the contralateral foot, but not in the context of isolated task performance. These results are inconsistent with the proposition of left hemisphere specialization for dynamic control in the lower limbs, and suggest that specialization of the right hemisphere for impedance control can be observed in balance control when stance is associated with voluntary movements of the contralateral lower limb.  相似文献   

10.
Typically, falls in older adults occur when 2 tasks are performed simultaneously, due to the increased motor demand required to maintain stability and attention to perform the other task. The authors' purpose was to investigate walking while grasping, transporting, and placing a dowel on a predetermined target while manipulating difficulty levels of the manual task. Faller and nonfaller older adults performed a walking block (manual tasks combined with gait) and a stationary block (upright stance combined with manual tasks). The manual task involved grasping, transporting, and placing the dowel over a target. The results showed that fallers underperformed when compared with nonfallers in the task of placing the dowel over the target. The main difference observed between the groups was found in the condition that required allocation of attention between tasks and greater accuracy in the final placement of the object. Fallers showed gait stability similar to the nonfallers, but fallers were less accurate than nonfallers in the object placement task, especially for the highest level of difficulty. Thus, fallers seem to use a stability-first strategy. Fallers had problems in executing the manual tasks, which suggests a more global change in motor behavior rather than specific changes to balance control.  相似文献   

11.
When we learn how to throw darts we adjust how we throw based on where the darts stick. Much of skill learning is computationally similar in that we learn using feedback obtained after the completion of individual actions. We can formalize such tasks as a search problem; among the set of all possible actions, find the action that leads to the highest reward. In such cases our actions have two objectives: we want to best utilize what we already know (exploitation), but we also want to learn to be more successful in the future (exploration). Here we tested how participants learn movement trajectories where feedback is provided as a monetary reward that depends on the chosen trajectory. We mathematically derived the optimal search policy for our experiment using decision theory. The search behavior of participants is well predicted by an ideal searcher model that optimally combines exploration and exploitation.  相似文献   

12.
Using micro-video cameras attached to the heads of 2 dogs, we examined their optical behavior while catching Frisbees. Our findings reveal that dogs use the same viewer-based navigational heuristics previously found with baseball players (i.e., maintaining the target along a linear optical trajectory, LOT, with optical speed constancy). On trials in which the Frisbee dramatically changed direction, the dog maintained an LOT with speed constancy until it apparently could no longer do so and then simply established a new LOT and optical speed until interception. This work demonstrates the use of simple control mechanisms that utilize invariant geometric properties to accomplish interceptive tasks. It confirms a common interception strategy that extends both across species and to complex target trajectories.  相似文献   

13.
Three experiments were conducted to examine effects of speech on concurrent unimanual tapping. Experiments 1 and 2 involved the manual tapping of a short burst of preprogrammed responses with or without concurrent articulation. Results of these experiments showed no effects of speech articulation on the concurrent execution of programmed manual movement sequences. In Experiment 3, subjects continuously tapped for 15 sec, again, with or without concurrent speech articulation. The results showed that articulation affected the speed of concurrent manual responses with larger interference for right hand tapping than for left hand tapping. Additional analysis of the tapping variability revealed equivalent effects of concurrent articulation on the timing of repetitive right and left hand tapping. Kinsbourne's Functional Cerebral Distance Principle was used to interpret these results. Within this framework, the present findings indicate that functionally distinct processes control speech articulation and the execution of programmed manual movement sequences.  相似文献   

14.
Increases in reaction time (RT) as a function of response complexity have been shown to differ between simple and choice RT tasks. Of interest in the present study was whether the influence of response complexity on RT depends on the extent to which movements are programmed in advance of movement initiation versus during execution (i.e., online). The task consisted of manual aiming movements to one or two targets (one- vs. two-element responses) under simple and choice RT conditions. The probe RT technique was employed to assess attention demands during RT and movement execution. Simple RT was greater for the two- than for the single-target responses but choice RT was not influenced by the number of elements. In both RT tasks, reaction times to the probe increased as a function of number of elements when the probe occurred during movement execution. The presence of the probe also caused an increase in aiming errors in the simple but not choice RT task. These findings indicated that online programming was occurring in both RT tasks. In the simple RT task, increased executive control mediated the integration between response elements through the utilization of visual feedback to facilitate the implementation of the second element.  相似文献   

15.
Increases in reaction time (RT) as a function of response complexity have been shown to differ between simple and choice RT tasks. Of interest in the present study was whether the influence of response complexity on RT depends on the extent to which movements are programmed in advance of movement initiation versus during execution (i.e., online). The task consisted of manual aiming movements to one or two targets (one- vs. two-element responses) under simple and choice RT conditions. The probe RT technique was employed to assess attention demands during RT and movement execution. Simple RT was greater for the two- than for the single-target responses but choice RT was not influenced by the number of elements. In both RT tasks, reaction times to the probe increased as a function of number of elements when the probe occurred during movement execution. The presence of the probe also caused an increase in aiming errors in the simple but not choice RT task. These findings indicated that online programming was occurring in both RT tasks. In the simple RT task, increased executive control mediated the integration between response elements through the utilization of visual feedback to facilitate the implementation of the second element.  相似文献   

16.
Summary Control-theory models of tracking behaviour imply continuous negative feedback as opposed to discrete control, and they assume the existence of a quadratic error criterion. The experimental induction of an asymmetric error criterion gives rise to a nonlinear control strategy which is used here to investigate the process of adaptation of tracking strategy to disturbances with varying statistical parameters. Results show that tracking behaviour adapts to time-varying signals, but this adaptation is not based on an estimate of the statistical parameters of the disturbance, as is assumed by an optimal-control model of tracking behaviour. It is suggested that continuous tracking behaviour is a special case induced by specific experimental conditions. In general, a view of tracking behaviour as a sequence of discrete actions seems more appropriate.This work was supported by Deutsche Forschungsgemeinschaft. Elke Melchior participated in this research  相似文献   

17.
ABSTRACT. Predicting behavior has been a main challenge in human movement science. An important step within the theory of coordination dynamics is to find out the rules that govern human behavior by defining order parameters and control parameters that support mathematical models to predict the behavior of a system. Models to describe human coordination have been focused on interlimb coordination and on interpersonal coordination in affiliative tasks but not on competitive tasks. This article aims to present a formal model with two attractors to describe the interactive behavior on a 2v1 system in rugby union. Interpersonal distance and relative velocity critical values were empirically identified and were included as task constraints that define the attractor landscape. It is shown that using relative velocity as a control parameter the model offers reasonable prediction concerning the decision-making process. The model has the plasticity to adapt to other settings where interpersonal distances and relative velocities amongst system components act as significant task constraints.  相似文献   

18.
The present study investigated motor expertise in interpersonal competitive ball-over-net sports in terms of a dynamical system with temporal input. In a theoretical framework, the behavior of the system is characterized by a fractal-like structure according to switching input, which changes uniquely according to the duration of input and internal parameter of the system. We investigated periodic movements, in which the player executed a forehand or backhand stroke repeatedly, and continuous switching movements, in which the player continuously switched between two movement patterns corresponding to hitting the ball under two ball directions and with six temporal constraint conditions during a table tennis rally. In the periodic movement, we observed two limit-cycle attractors corresponding to each direction in the phase space independent of temporal constraint or skill level. Conversely, in the continuous switching movement, a transition in trajectories between the two limit-cycle attractors was observed in the phase space, and this transition was characterized by a fractal-like structure. The fractal-like structure moved closer to the random structure as temporal constraint increased independent of skill level. However, the temporal constraint condition closest to the random structure was higher for the advanced players than for the novices, indicating that robustness to the temporal constraint was higher for the advanced players than for the novices. Our results suggest that motor expertise in interpersonal competitive ball-over-net sports is more robust to temporal constraints with various inputs.  相似文献   

19.
Augmented feedback, provided by coaches or displays, is a well-established strategy to accelerate motor learning. Frequent terminal feedback and concurrent feedback have been shown to be detrimental for simple motor task learning but supportive for complex motor task learning. However, conclusions on optimal feedback strategies have been mainly drawn from studies on artificial laboratory tasks with visual feedback only. Therefore, the authors compared the effectiveness of learning a complex, 3-dimensional rowing-type task with either concurrent visual, auditory, or haptic feedback to self-controlled terminal visual feedback. Results revealed that terminal visual feedback was most effective because it emphasized the internalization of task-relevant aspects. In contrast, concurrent feedback fostered the correction of task-irrelevant errors, which hindered learning. The concurrent visual and haptic feedback group performed much better during training with the feedback than in nonfeedback trials. Auditory feedback based on sonification of the movement error was not practical for training the 3-dimensional movement for most participants. Concurrent multimodal feedback in combination with terminal feedback may be most effective, especially if the feedback strategy is adapted to individual preferences and skill level.  相似文献   

20.
Two imaging experiments were performed—one involving an algebraic transformation task studied by Anderson, Reder, and Lebiere (1996) and the other an abstraction symbol manipulation task studied by Blessing and Anderson (1996). ACT-R models exist that predict the latency patterns in these tasks. These models require activity in an imaginal buffer to represent changes to the problem representation, in a retrieval buffer to hold information from declarative memory, and in a manual buffer to hold information about motor behavior. A general theory is described about how to map activity in these buffers onto the fMRI blood oxygen level dependent (BOLD) response. This theory claims that the BOLD response is integrated over the duration that a buffer is active and can be used to predict the observed BOLD function. Activity in the imaginal buffer is shown to predict the BOLD response in a left posterior parietal region; activity in the retrieval buffer is shown to predict the BOLD response in a left prefrontal region; and activity in the manual buffer is shown to predict activity in a motor region. More generally, this article shows how to map a large class of information-processing theories (not just ACT-R) onto the BOLD response and provides a precise interpretation of the cognitive significance of the BOLD response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号