首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Impaired hip muscle function has often been cited as a contributing factor to the development of iliotibial band syndrome (ITBS), yet our full understanding of this relationship is not well established. The objective of this study was to examine the effect of fatigue on hip abductor muscle function in females with ITBS. Female runners, 20 healthy and 12 with a current diagnosis of ITBS, performed a treadmill run to fatigue. Prior-to and following the run to fatigue, gluteus medius strength and median frequency values (an indicator of fatigue resistance) were measured. Additionally, onset activation timing of the gluteus medius and tensor fascia latae was measured during overground running. Both healthy and injured runners demonstrated decreased gluteus medius strength following the run to fatigue (p = 0.01), but there was no interaction between groups (p = 0.78). EMG onset activation timing did not differ between groups for the gluteus medius (P = 0.19) and tensor fascia latae muscles (P = 0.52). Injured runners demonstrated decreased gluteus medius initial median frequency values suggestive of fatigue (P = 0.01). These findings suggest that the gluteus medius muscle of female runners with ITBS does not demonstrate gross strength impairments but does demonstrate less resistance to fatigue. Clinicians should consider implementation of a gluteus medius endurance training regimen into a runner’s rehabilitation program.  相似文献   

2.
Reduced stability while standing typically decreases the soleus muscle Hoffmann (H-) reflex amplitude, purportedly to prevent the Ia afferent signal from excessively activating spinal motor neurons during the unstable stance. H-reflex measures, however, by excluding the spindle do not reflect the actual effect of the Ia pathway (i.e. the combined effects of spindle sensitivity and Ia presynaptic inhibition) on motor neuron activation, as tendon tap reflex measures can. But the effect of stance stability on soleus muscle tendon tap reflex amplitude is largely unknown. This study examined 30 young adults (mean(s), 21(2) years) as they stood in a wide stable stance position and an unstable tandem stance with a reduced base of support. Standing body sway, the amplitude of the soleus muscle tendon tap reflex, background EMG and tap force were measured in both stances. A repeated measured design t-test was calculated for each variable. Most subjects (69%) decreased tendon tap reflex amplitude when in the tandem stance position (mean decrease 11.6%), compared to the wide stance (wide stance 0.248(0.124) mV, tandem stance 0.219(0.119) mV, p < 0.05, Cohen’s d = 0.24 small) with no significant differences in background soleus and tibialis anterior EMG, and tap force across the stances. There was no relationship between the modulation of the tendon tap reflex amplitude across the stances and standing body sway in the tandem stance. Results support the idea that for most subjects examined, during a less stable stance the Ia excitation of motor neurons is decreased, likely by presynaptic inhibition, thereby avoiding potential instability in the reflex loop or saturating the reflex pathway and possibly interfering with descending control of the involved spinal motor neurons.  相似文献   

3.
Hypotheses advanced concerning the functions and advantages of the two-joint (and multi-joint) muscles in the lower limb include transferring energy, ease of control, muscle bulk reduction and decreased velocity of contraction. The aim of this investigation was to assess quantitatively the generality of one such suggestion seen in the literature. It was hypothesized that two-joint muscles would be recruited preferentially when they produced appropriate moments at the joints they crossed. This organizing strategy was used to partition the sagittal plane joint moment at the hip, knee and ankle between the one- and two-joint muscles crossing those joints. If the conditions of the strategy were not met, the moment was considered to be producted by one-joint muscles only. Ten representative muscles were modelled: tibialis anterior, soleus, gastrocnemius, short head of biceps femoris, vasti, rectus femoris, long head of biceps femoris, sartorius, gluteus maximus and iliopsoas. A number of static loading and walking conditions were recorded and then compared to simultaneously measured linear envelope EMG records of each activity. The joint moments were determined from a sagittal plane kinetic analysis using cinematography and measurements of the ground reaction force. Overall, the strategy partitioned the moment between the one- and two-joint muscles in accordance with the EMG records. The strategy tended to underestimate the contributions of the one-joint musculature, implying the existence of other important control strategies, such as cocontraction of antagonists for joint stability, or of synergistic activation to share the joint moment. It was, however, observed that predicted activity of two-joint musculature did agree well with recorded EMG activity.  相似文献   

4.
Achilles tendinopathy is the most frequent foot overuse injury in ballet dancers and knowledge of clinically modifiable factors related to tendon structure in a population at risk, such as ballet dancers, would be important for the development of preventive programs. Therefore, the present study aimed to assess relationships of gastrocnemius muscle architecture and ankle plantar flexors function with Achilles tendon morphology in ballet dancers. Fifty-four measures from 27 ballet dancers were collected. Tendon morphology (thickness, echogenicity, hypoechoic areas and neovascularisation) and muscle architecture (thickness, pennation angle and fascicle length) were evaluated using ultrasonography; ankle plantar flexors torque was evaluated using hand-held dynamometry, flexibility was evaluated in maximal weight-bearing ankle dorsiflexion position using inclinometer, and endurance was evaluated using the heel rise test. Ankle plantar flexors torque and medial gastrocnemius muscle architecture (thickness, pennation angle and fascicle length) are associated with Achilles tendon thickness in ballet dancers (r2 = 0.24, p = 0.008). Ankle plantar flexors torque and medial gastrocnemius muscle fascicle length are also associated with the echogenicity of the Achilles tendon (r2 = 0.13, p = 0.03). These findings call attention to the potential importance of ankle plantar flexors muscle force in healthy ballet dancers for the prevention of alterations in Achilles tendon structure.  相似文献   

5.
Previous studies reported changes in spatiotemporal gait parameters during dual-task performance while walking using a smartphone compared to walking without a smartphone. However, studies that assess muscle activity while walking and simultaneously performing smartphone tasks are scarce. So, this study aimed to assess the effects of motor and cognitive tasks using a smartphone while simultaneously performing gait on muscle activity and gait spatiotemporal parameters in healthy young adults. Thirty young adults (22.83 ± 3.92 years) performed five tasks: walking without a smartphone (single-task, ST); typing on a smartphone keyboard in a sitting position (secondary motor single-task); performing a cognitive task on a smartphone in a sitting position (cognitive single-task); walking while typing on a smartphone keyboard (motor dual-task, mot-DT) and walking while performing a cognitive task on a smartphone (cognitive dual-task, cog-DT). Gait speed, stride length, stride width and cycle time were collected using an optical motion capture system coupled with two force plates. Muscle activity was recorded using surface electromyographic signals from bilateral biceps femoris, rectus femoris, tibialis anterior, gastrocnemius medialis, gastrocnemius lateralis, gluteus maximus and lumbar erector spinae. Results showed a decrease in stride length and gait speed from the single-task to cog-DT and mot-DT (p < 0.05). On the other hand, muscle activity increased in most muscles analyzed from single- to dual-task conditions (p < 0.05). In conclusion, performing a cognitive or motor task using a smartphone while walking promote a decline in spatiotemporal gait parameters performance and change muscle activity pattern compared to normal walking.  相似文献   

6.
This study measured gluteus medius (GM) strength and endurance before and after a 2 h prolonged standing task in previously asymptomatic individuals, to compare between individuals who did and did not report pain in the low back. Twenty-four participants without a history of low back pain stood in a constrained area for 2 h. Before and after the standing protocol, participant’s maximal hip abduction strength (N) and side-bridge endurance (seconds and GM myoelectric fatigue) were measured. Continuous surface EMG was collected from GM during the 2-h protocol for analysis of bilateral co-activation. Pain in the low back was rated every 15 min with a visual analog scale (VAS). Seventeen of 24 (71%) previously asymptomatic participants developed pain in the low back during the standing protocol. These participants had lower side-bridge endurance (p = .002), and higher gluteus medius (GM) co-activation (p = .002) compared to participants who did not develop pain in the low back. Hip abduction strength decreased for both groups following prolonged standing, with no between groups’ difference. Lower side-bridge endurance and hip abduction strength were significantly associated with higher GM co-activation (adjusted r2 = .34), but not pain levels. Side-bridge endurance and GM co-activation, but not hip abduction strength, may have utility in identifying participants likely to develop pain in the low back during prolonged standing. The best training program for increasing GM endurance is unclear.  相似文献   

7.
Individual differences in muscle contractile speed during static explosive muscle contraction are reflected in the developmental phase of the force-time curve. The purposes of this study were to clarify the properties and reliability of the inflection point of force-time, statistically dividing speed during static explosive grip into two phases and to assess the relations between that inflection point and others. Static explosive grip data were measured two times with a 5-min. rest (sampling frequency; 100 Hz). 32 healthy, young men (age: 15.5 +/- 0.8 yr., height: 173.9 +/- 7.3 cm, body mass: 71.5 +/- 11.2 kg) participated. 8 static explosive grip parameters were selected: time of reaching, integrated area, and quotient values of the integrated areas up to 0.25, 0.5, and 1.0 sec. divided by maximal grip force. The inflection point was calculated statistically from two regression lines fitted to a developmental phase and the almost steady-state phase of reaching maximal grip force by applying a two-phase regression model. The reliabilities of maximal grip force, time of reaching 90% of maximal grip force, and the integrated area until 0.5 sec. and 1.0 sec. after the onset of grip were good (ICC=.77 to .93). The time of reaching an inflection force value appeared at 0.3 sec. after the onset of grip, corresponding to 80% of maximal grip force, and the reliabilities of the parameters regarding inflection point were good (ICC=.77 to .95). The time determined by boundary data between the former and the latter regression data set and the regression coefficient during the developmental phase correlated significantly with the time of reaching 90% of maximal grip force, the integrated area, and the quotient values of the integrated areas up to 0.25, 0.5, and 1.0 sec. divided by maximal grip force (rs=-.78 to -.96 and -.75 to 0.88, respectively, p<.05). However, these parameters did not correlate with maximal grip force. A force during the developmental phase and maximal grip force can depend on different physiological factors. The time determined by boundary data between the former and the latter regression data set and the regression coefficient during the developmental phase are useful parameters for evaluating static explosive grip.  相似文献   

8.
An in vivo tendon force measurement system was used to evaluate index finger flexor motor control patterns during active finger flexion. During open carpal tunnel release surgery (N=12) the flexor digitorum profundus (FDP) and flexor digitorum superficilias (FDS) tendons were instrumented with buckle force transducers and participants performed finger flexion at two different wrist angles (0 degrees or 30 degrees ). During finger flexion, there was concurrent change of metacarpophalangeal (MCP) and proximal interphalangeal (PIP) joint angles, but the FDP and FDS tendon force changes were not concurrent. For the FDS tendon, no consistent changes in force were observed across participants at either wrist angle. For the FDP tendon, there were two force patterns. With the wrist in a neutral posture, the movement was initiated without force from the finger flexors, and further flexion (after the first 0.5s) was carried out with force from the FDP. With the wrist in a flexed posture, the motion was generally both initiated and continued using FDP force. At some wrist postures, finger flexion was initiated by passive forces which were replaced by FDP force to complete the motion.  相似文献   

9.
Patellofemoral pain (PFP) is common among runners and those recovering from anterior cruciate ligament reconstruction. Training programs designed to prevent or treat injuries often include balance training, although balance interventions have been reported to coincide with more knee injuries. Knowledge of the effect of balance exercises on knee mechanics may be useful when designing training programs. High knee abduction moment has been implicated in the development of PFP, and imbalance between vastus lateralis (VL) and vastus medialis oblique (VMO) may contribute to patellofemoral stress. The purpose was to quantify knee abduction moment and vasti muscle activity during balance exercises. Muscle activity of VMO and VL, three-dimensional lower-extremity kinematics, and ground reaction forces of healthy recreational athletes (12M, 13F) were recorded during five exercises. Peak knee abduction moment, ratio of VMO:VL activity, and delay in onset of VMO relative to VL were quantified for each exercise. The influence of sex and exercise on each variable was determined using a mixed-model ANOVA. All analyses indicated a significant main effect of exercise, p < 0.05. Follow-up comparisons showed low peak knee abduction moment and high VMO:VL ratio for the task with anterior-posterior motion. Delay of VMO relative to VL was similar among balance board tasks.  相似文献   

10.
A pplications of standard item response theory models assume local independence of items and persons. This paper presents polytomous multilevel testlet models for dual dependence due to item and person clustering in testlet‐based assessments with clustered samples. Simulation and survey data were analysed with a multilevel partial credit testlet model. This model was compared with three alternative models – a testlet partial credit model (PCM), multilevel PCM, and PCM – in terms of model parameter estimation. The results indicated that the deviance information criterion was the fit index that always correctly identified the true multilevel testlet model based on the quantified evidence in model selection, while the Akaike and Bayesian information criteria could not identify the true model. In general, the estimation model and the magnitude of item and person clustering impacted the estimation accuracy of ability parameters, while only the estimation model and the magnitude of item clustering affected the item parameter estimation accuracy. Furthermore, ignoring item clustering effects produced higher total errors in item parameter estimates but did not have much impact on the accuracy of ability parameter estimates, while ignoring person clustering effects yielded higher total errors in ability parameter estimates but did not have much effect on the accuracy of item parameter estimates. When both clustering effects were ignored in the PCM, item and ability parameter estimation accuracy was reduced.  相似文献   

11.
The purpose of this study was to compare reaction times and electromechanical delay between reactions to increase force from rest and reactions to decrease force from an active state in the quadriceps femoris of healthy young adults. Force, position, and electromyographic data were recorded from 35 subjects reacting to a forced knee-flexion perturbation. Electromechanical delay was assessed through cross-correlation of the filtered EMG and force data. Reaction time to increase force (M= 159.9 msec., 95% CI= 149.9-169.9 msec.) was significantly longer than RT to decrease force (M= 124.4 msec., 95% CI= 118.7-130.1 msec.). This difference was partially caused by a difference in electromechanical delay (RT to increase force electromechanical delay was 63 msec., 95% CI=60-67 msec., greater than the RT to decrease force electromechanical delay of 49 msec., 95% CI=46-52 msec.). This difference in reaction time could be important in identifying and interpreting physiologically meaningful changes in muscle force and in intermuscular coordination during movement.  相似文献   

12.
The purpose of the study was to investigate with what accuracy the soleus H-reflex modulation and excitability could be measured during human walking on two occasions separated by days. The maximal M-wave (Mmax) was measured at rest in the standing position. During treadmill walking every stimulus elicited an M-wave of 25 ± 10% of Mmax in the soleus muscle and a supra-maximal stimulus elicited a maximal M-wave 60 ms after the first stimulus. Both Mmax during rest and during walking were later used for normalization. When normalized to resting Mmax, the peak reflex amplitude during walking was 5% lower on Day 2 than on Day 1 (p = .32). However, when the peak H-reflex was normalized to Mmax in every sweep, Day 2 showed a significant 15% lower amplitude (p = .037). The same pattern was found for the mean H-reflex. Spearman’s Rho was .92 when normalized to resting Mmax but .88 when normalized to Mmax in every sweep. The Pearson product was used to identify one participant at a time on Day 1 among all seven participants on Day 2. For both normalization procedures 5 of 7 participants were identified by this test. Since 5 of 7 participants were recognized between days, it must be recommended to use 10-15 participants for training or intervention studies as far as the H-reflex pattern of modulation during movement is concerned.  相似文献   

13.
Sudden addition or removal of visual information can be particularly critical to balance control. The promptness of adaptation of stance control mechanisms is quantified by the latency at which body oscillation and postural muscle activity vary after a shift in visual condition. In the present study, volunteers stood on a force platform with feet parallel or in tandem. Shifts in visual condition were produced by electronic spectacles. Ground reaction force (center of foot pressure, CoP) and EMG of leg postural muscles were acquired, and latency of CoP and EMG changes estimated by t-tests on the averaged traces. Time-to-reach steady-state was estimated by means of an exponential model. On allowing or occluding vision, decrements and increments in CoP position and oscillation occurred within about 2 s. These were preceded by changes in muscle activity, regardless of visual-shift direction, foot position or front or rear leg in tandem. These time intervals were longer than simple reaction-time responses. The time course of recovery to steady-state was about 3 s, shorter for oscillation than position. The capacity of modifying balance control at very short intervals both during quiet standing and under more critical balance conditions speaks in favor of a necessary coupling between vision, postural reference, and postural muscle activity, and of the swiftness of this sensory reweighing process.  相似文献   

14.
In humans and animals, spatial and temporal information from the nervous system are translated into muscle force enabling movements of body segments. To gain deeper understanding of this translation of information into movements, we investigated the motor control dynamics of isometric contractions in children, adolescents, young adults and older adults. Twelve children, thirteen adolescents, fourteen young adults, and fifteen older adults completed two minutes of submaximal isometric plantar- and dorsiflexion. Simultaneously, sensorimotor cortex EEG, tibialis anterior and soleus EMG and plantar- and dorsiflexion force was recorded. Surrogate analysis suggested that all signals were from a deterministic origin. Multiscale entropy analysis revealed an inverted U-shape relationship between age and complexity for the force but not for the EEG and EMG signals. This suggests that temporal information in from the nervous system is modulated by the musculoskeletal system during the transmission into force. The entropic half-life analyses indicated that this modulation increases the time scale of the temporal dependency in the force signal compared to the neural signals. Together this indicates that the information embedded in produced force does not exclusively reflect the information embedded in the underlying neural signal.  相似文献   

15.
Besides clinical symptoms, progress and electromyography the computer tomography is a possibility for improvement the diagnostic of myotone dystrophy. Even small changes in muscle structure are detectable and especially m. soleus exhibits early and pronounced alterations. By means of density distribution pattern an improved characterization of the disease is possible. Additional informations are obtained by cerebralcomputertomography. Hints for atrophy of brain tissue are expectable at all patients with myotone dystrophy. According to the presented findings the computer tomography enlarges the diagnostic possibilities at myotone dystrophy.  相似文献   

16.
Despite well-authorized facts regarding asymmetrical architectural changes between different limbs after persistent participation in particular motor training, no studies have addressed the neural aspects to the present. The authors undertook the study to elucidate the possibility of neural adaptation on a limb-by-limb basis after repetitive engagement in a particular motor training routine. We investigated lower leg muscles in endurance-trained track runners who have been trained by routinely running on a track in counterclockwise direction on curved paths. Stretch reflex responses in the plantarflexor muscles (soleus [SOL], medial [MG], and lateral head of the gastrocnemius muscle) were evaluated bilaterally with participants sitting at rest. Comparisons were made between homonymous muscles of the right (corresponding to outside leg for track running) and left leg (inside leg, likewise) and with a group of nontrained controls. The result clearly demonstrated that the responses were prominently different between the legs (thus, asymmetrical) in the MG muscles and partially in the SOL muscles in the trained group. In contrast, no such differences were obtained in the nontrained control group. The result demonstrated that neural adaptation took place asymmetrically and that could be attributable to their repetitive engagement in the stereotypical motor task.  相似文献   

17.
In a recent critique of Carpenter and Just’s (1975) verification model, Tanenhaus, Carroll, and Bever (1976) pointed out that the estimates of the comparison parameter of the model varied considerably among tasks. In particular, estimates of this parameter were higher for picture-first than for sentence-first sentence-picture verification tasks. The picture-first estimates, however, were based upon an analysis of only a subset of the trials: namely, those in which the preposition “above” was embedded in the sentence. When a more comprehensive model is applied to the data of picture-first experiments, the estimates of the comparison operation are comparable to those based on sentence-first tasks.  相似文献   

18.
PurposeThe aim of this study was to examine the effect of vision on anticipatory postural control (APA) responses in two groups of clinically diagnosed chronic low back pain patients, those with Posterior Pelvic Girdle pain and those with Non-Specific Low Back Pain compared to a matched group of healthy controls during the modified Trendelenburg task.MethodsSeventy-eight volunteer participants (60 females and 18 males) gave informed consent to take part in this study. 39 with confirmed LBP or PGP lasting longer than 12 weeks and 39 healthy matched controls performed 40 single leg lift tasks (hip flexion to 90° as quickly as possible) with their non-dominant lower limb. A force plate was used to determine the medial-lateral displacement of the center of pressure, and the initiation of weight shift; kinematics was used to determine initiation of leg lift; and electromyography was used to determine onset times from the external oblique (EO), internal oblique (IO) and lumbar multifidus (MF), gluteus maximus (GM) and biceps femoris (BF).ResultsThe PGP group showed significantly longer muscle onset latencies in the BF, EO MF with visual occlusion (F2,746 = 4.51, p < .0001).ConclusionThe muscle onset delays identified between the two LBP sub-groups suggests that pain may not be the primary factor in alteration of APA response. The PGP group show a greater reliance on vision which may signal impairment in multiple feedback channels.  相似文献   

19.
当观测指标变量为二分分类数据时,传统的因素分析方法不再适用。作者简要回顾了SEM框架下的分类数据因素分析模型和IRT框架下的测验题目和潜在能力的关系模型,并对两种框架下主要采用的参数估计方法进行了总结。通过两个模拟研究,比较了SEM框架下GLSc和MGLSc估计方法与IRT框架下MML/EM估计方法的差异。研究结果表明:(1)三种方法中,GLSc得到参数估计的偏差最大,MGLSc和MML/EM估计方法相差不大;(2)随着样本量增大,各种项目参数估计的精度均提高;(3)项目因素载荷和难度估计的精度受测验长度的影响;(4)项目因素载荷和区分度估计的精度受总体因素载荷(区分度)高低的影响;(5)测验项目中阈值的分布会影响参数估计的精度,其中受影响最大的是项目区分度。(6)总体来看,SEM框架下的项目参数估计精度较IRT框架下项目参数估计的精度高。此外,文章还将两种方法在实际应用中应该注意的问题提供了一些建议。  相似文献   

20.
The soleus is the most commonly used muscle for H-reflex studies in humans, while limited comparable data have been produced from the gastrocnemii muscles. This article reviews the fundamental differences between the structure and function of the human soleus and gastrocnemii muscles, including recent data published about their complex innervation zones. Protocols for eliciting, recording, and assessing the H-reflex and M-wave magnitude in the human triceps surae are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号