首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Recent theories in numerical cognition propose the existence of an approximate number system (ANS) that supports the representation and processing of quantity information without symbols. It has been claimed that this system is present in infants, children, and adults, that it supports learning of symbolic mathematics, and that correctly harnessing the system during tuition will lead to educational benefits. Various experimental tasks have been used to investigate individuals' ANSs, and it has been assumed that these tasks measure the same system. We tested the relationship across six measures of the ANS. Surprisingly, despite typical performance on each task, adult participants' performances across the tasks were not correlated, and estimates of the acuity of individuals' ANSs from different tasks were unrelated. These results highlight methodological issues with tasks typically used to measure the ANS and call into question claims that individuals use a single system to complete all these tasks.  相似文献   

2.
Much recent research attention has focused on understanding individual differences in the approximate number system, a cognitive system believed to underlie human mathematical competence. To date researchers have used four main indices of ANS acuity, and have typically assumed that they measure similar properties. Here we report a study which questions this assumption. We demonstrate that the numerical ratio effect has poor test–retest reliability and that it does not relate to either Weber fractions or accuracy on nonsymbolic comparison tasks. Furthermore, we show that Weber fractions follow a strongly skewed distribution and that they have lower test–retest reliability than a simple accuracy measure. We conclude by arguing that in the future researchers interested in indexing individual differences in ANS acuity should use accuracy figures, not Weber fractions or numerical ratio effects.  相似文献   

3.
Humans possess a developmentally precocious and evolutionarily ancient approximate number system (ANS) whose sensitivity correlates with uniquely human symbolic arithmetic skills. Recent studies suggest that ANS training improves symbolic arithmetic, but such studies may engender performance expectations in their participants that in turn produce the improvement. Here, we assessed 6‐ to 8‐year‐old children's expectations about the effects of numerical and non‐numerical magnitude training, as well as states of satiety and restfulness, in the context of a study linking children's ANS practice to their improved symbolic arithmetic. We found that children did not expect gains in symbolic arithmetic after exercising the ANS, although they did expect gains in ANS acuity after training on any magnitude task. Moreover, children expected gains in symbolic arithmetic after a good night's sleep and their favourite breakfast. Thus, children's improved symbolic arithmetic after ANS training cannot be explained by their expectations about that training.  相似文献   

4.
The approximate number system (ANS) allows people to quickly but inaccurately enumerate large sets without counting. One popular account of the ANS is known as the accumulator model. This model posits that the ANS acts analogously to a graduated cylinder to which one ??cup?? is added for each item in the set, with set numerosity read from the ??height?? of the cylinder. Under this model, one would predict that if all the to-be-enumerated items were not collected into the accumulator, either the sets would be underestimated, or the misses would need to be corrected by a subsequent process, leading to longer reaction times. In this experiment, we tested whether such miss effects occur. Fifty participants judged numerosities of briefly presented sets of circles. In some conditions, circles were arranged such that some were inside others. This circle nesting was expected to increase the miss rate, since previous research had indicated that items in nested configurations cannot be preattentively individuated in parallel. Logically, items in a set that cannot be simultaneously individuated cannot be simultaneously added to an accumulator. Participants?? response times were longer and their estimations were lower for sets whose configurations yielded greater levels of nesting. The level of nesting in a display influenced estimation independently of the total number of items present. This indicates that miss effects, predicted by the accumulator model, are indeed seen in ANS estimation. We speculate that ANS biases might, in turn, influence cognition and behavior, perhaps by influencing which kinds of sets are spontaneously counted.  相似文献   

5.
The relation between the approximate number system (ANS) and symbolic number processing skills remains unclear. Some theories assume that children acquire the numerical meaning of symbols by mapping them onto the preexisting ANS. Others suggest that in addition to the ANS, children also develop a separate, exact representational system for symbolic number processing. In the current study, we contribute to this debate by investigating whether the nonsymbolic number processing of kindergarteners is predictive for symbolic number processing. Results revealed no association between the accuracy of the kindergarteners on a nonsymbolic number comparison task and their performance on the symbolic comparison task six months later, suggesting that there are two distinct representational systems for the ANS and numerical symbols.  相似文献   

6.
7.
The study assessed the relations among acuity of the inherent approximate number system (ANS), performance on measures of symbolic quantitative knowledge, and mathematics achievement for a sample of 138 (64 boys) preschoolers. The Weber fraction (a measure of ANS acuity) and associated task accuracy were significantly correlated with mathematics achievement following one year of preschool, and predicted performance on measures of children's explicit knowledge of Arabic numerals, number words, and cardinal value, controlling for age, sex, parental education, intelligence, executive control, and preliteracy knowledge. The relation between ANS acuity, as measured by the Weber fraction and task accuracy, and mathematics achievement was fully mediated by children's performance on the symbolic quantitative tasks, with knowledge of cardinal value emerging as a particularly important mediator. The overall pattern suggests that ANS acuity facilitates the early learning of symbolic quantitative knowledge and indirectly influences mathematics achievement through this knowledge.  相似文献   

8.
Previous research shows a correlation between individual differences in people's school math abilities and the accuracy with which they rapidly and nonverbally approximate how many items are in a scene. This finding is surprising because the Approximate Number System (ANS) underlying numerical estimation is shared with infants and with non-human animals who never acquire formal mathematics. However, it remains unclear whether the link between individual differences in math ability and the ANS depends on formal mathematics instruction. Earlier studies demonstrating this link tested participants only after they had received many years of mathematics education, or assessed participants' ANS acuity using tasks that required additional symbolic or arithmetic processing similar to that required in standardized math tests. To ask whether the ANS and math ability are linked early in life, we measured the ANS acuity of 200 3- to 5-year-old children using a task that did not also require symbol use or arithmetic calculation. We also measured children's math ability and vocabulary size prior to the onset of formal math instruction. We found that children's ANS acuity correlated with their math ability, even when age and verbal skills were controlled for. These findings provide evidence for a relationship between the primitive sense of number and math ability starting early in life.  相似文献   

9.
近似数量系统在个体数学能力的发展中起着重要的作用, 二者之间的关系受到年龄因素的影响。主要表现为, 随着年龄的增长, 相关程度逐渐减弱, 二者之间关系的作用机制可能由基数知识中介转变为多种中介变量的共同作用。未来可采用更严格的实验设计和多种研究方法考察各年龄段儿童近似数量系统与不同数学能力之间关系的发展趋势、因果方向、关键转折点和潜在机制, 以更好地理解近似数量系统在个体数学能力发展中所起的作用。  相似文献   

10.
Individual differences in the ability to compare and evaluate nonsymbolic numerical magnitudes—approximate number system (ANS) acuity—are emerging as an important predictor in many research areas. Unfortunately, recent empirical studies have called into question whether a historically common ANS-acuity metric—the size of the numerical distance effect (NDE size)—is an effective measure of ANS acuity. NDE size has been shown to frequently yield divergent results from other ANS-acuity metrics. Given these concerns and the measure’s past popularity, it behooves us to question whether the use of NDE size as an ANS-acuity metric is theoretically supported. This study seeks to address this gap in the literature by using modeling to test the basic assumption underpinning use of NDE size as an ANS-acuity metric: that larger NDE size indicates poorer ANS acuity. This assumption did not hold up under test. Results demonstrate that the theoretically ideal relationship between NDE size and ANS acuity is not linear, but rather resembles an inverted J-shaped distribution, with the inflection points varying based on precise NDE task methodology. Thus, depending on specific methodology and the distribution of ANS acuity in the tested population, positive, negative, or null correlations between NDE size and ANS acuity could be predicted. Moreover, peak NDE sizes would be found for near-average ANS acuities on common NDE tasks. This indicates that NDE size has limited and inconsistent utility as an ANS-acuity metric. Past results should be interpreted on a case-by-case basis, considering both specifics of the NDE task and expected ANS acuity of the sampled population.  相似文献   

11.
12.
已有大量研究揭示了近似数量系统与计算流畅性的相关关系, 但缺少对二者关系原因的系统检验与论证。视觉形状知觉假设有别于传统的数量领域特异性解释, 认为对形状的快速知觉是近似数量系统与计算流畅性的共同认知机制, 即视觉形状的快速知觉能力可以解释二者之间的相关关系。近似数量系统和计算流畅性在加工过程中依赖对形状的快速知觉, 二者在加工过程中都涉及了复杂视觉刺激的快速处理。视觉形状知觉假设得到了一系列研究结果的支持, 但局限在视觉形状知觉与二者关系的探讨上, 视觉形状知觉在二者关系中作用的加工机制仍不清楚。未来研究需要结合多种研究方法和技术, 多角度深入探讨视觉形状知觉在二者关系中作用的认知与脑机制, 并将研究结果应用于数学课堂教学和计算困难的干预中。  相似文献   

13.
Although everyone perceives approximate numerosities, some people make more accurate estimates than others. The accuracy of this estimation is called approximate number system (ANS) acuity. Recently, several studies have reported that individual differences in young children's ANS acuity are correlated with their knowledge of exact numbers such as the word ‘six’ (Mussolin et al., 2012, Trends Neurosci. Educ., 1, 21; Shusterman et al., 2011, Connecting early number word knowledge and approximate number system acuity; Wagner & Johnson, 2011, Cognition, 119, 10; see also Abreu‐Mendoza et al., 2013, Front. Psychol., 4, 1). This study argues that this correlation should not be trusted. It seems to be an artefact of the procedure used to assess ANS acuity in children. The correlation arises because (1) some experimental designs inadvertently allow children to answer correctly based on the size (rather than the number) of dots in the display and/or (2) young children with little exact‐number knowledge may not understand the phrase ‘more dots’ to mean numerically more. When the task is modified to make sure that children respond on the basis of numerosity, the correlation between ANS acuity and exact‐number knowledge in normally developing children disappears.  相似文献   

14.
Humans rely on two main systems of quantification; one is nonsymbolic and involves approximate number representations (known as the approximate number system or ANS), and the other is symbolic and allows for exact calculations of number. Despite the pervasiveness of the ANS across development, recent studies with adolescents and school-aged children point to individual differences in the precision of these representations that, importantly, have been shown to relate to symbolic math competence even after controlling for general aspects of intelligence. Such findings suggest that the ANS, which humans share with nonhuman animals, interfaces specifically with a uniquely human system of formal mathematics. Other findings, however, point to a less straightforward picture, leaving open questions about the nature and ontogenetic origins of the relation between these two systems. Testing children across the preschool period, we found that ANS precision correlated with early math achievement but, critically, that this relation was nonlinear. More specifically, the correlation between ANS precision and math competence was stronger for children with lower math scores than for children with higher math scores. Taken together, our findings suggest that early-developing connections between the ANS and mathematics may be fundamentally discontinuous. Possible mechanisms underlying such nonlinearity are discussed.  相似文献   

15.
The mental number line: exact and approximate   总被引:1,自引:0,他引:1  
Fias W  Verguts T 《Trends in cognitive sciences》2004,8(10):447-8; author reply 448-9
  相似文献   

16.
Children's understanding of the quantities represented by number words (i.e., cardinality) is a surprisingly protracted but foundational step in their learning of formal mathematics. The development of cardinal knowledge is related to one or two core, inherent systems – the approximate number system (ANS) and the object tracking system (OTS) – but whether these systems act alone, in concert, or antagonistically is debated. Longitudinal assessments of 198 preschool children on OTS, ANS, and cardinality tasks enabled testing of two single‐mechanism (ANS‐only and OTS‐only) and two dual‐mechanism models, controlling for intelligence, executive functions, preliteracy skills, and demographic factors. Measures of both OTS and ANS predicted cardinal knowledge in concert early in the school year, inconsistent with single‐mechanism models. The ANS but not the OTS predicted cardinal knowledge later in the school year as well the acquisition of the cardinal principle, a critical shift in cardinal understanding. The results support a Merge model, whereby both systems initially contribute to children's early mapping of number words to cardinal value, but the role of the OTS diminishes over time while that of the ANS continues to support cardinal knowledge as children come to understand the counting principles.  相似文献   

17.
Reasoning with non-symbolic numerosities is suggested to be rooted in the Approximate Number System (ANS) and evidence pointing to a relationship between the acuity of this system and mathematics is available. In order to use the acuity of this ANS as a screening instrument to detect future math problems, it is important to model ANS acuity over development. However, whether ANS acuity and its development have been described accurately can be questioned. Namely, different tasks were used to examine the developmental trajectory of ANS acuity and studies comparing performances on these different tasks are scarce. In the present study, we examined whether different tasks designed to measure the acuity of the ANS are comparable and lead to related ANS acuity measures (i.e., the concurrent validity of these tasks). We contrasted the change detection task, which is used in infants, with tasks that are more commonly used in older children and adults (i.e., comparison and same-different tasks). Together, our results suggest that ANS acuity measures obtained with different tasks are not related. This poses serious problems for the comparison of ANS acuity measures derived from different tasks and thus for the establishment of the developmental trajectory of ANS acuity.  相似文献   

18.
Recent research reveals a link between individual differences in mathematics achievement and performance on tasks that activate the approximate number system (ANS): a primitive cognitive system shared by diverse animal species and by humans of all ages. Here we used a brief experimental paradigm to test one causal hypothesis suggested by this relationship: activation of the ANS may enhance children’s performance of symbolic arithmetic. Over 2 experiments, children who briefly practiced tasks that engaged primitive approximate numerical quantities performed better on subsequent exact, symbolic arithmetic problems than did children given other tasks involving comparison and manipulation of non-numerical magnitudes (brightness and length). The practice effect appeared specific to mathematics, as no differences between groups were observed on a comparable sentence completion task. These results move beyond correlational research and provide evidence that the exercise of non-symbolic numerical processes can enhance children’s performance of symbolic mathematics.  相似文献   

19.
Autobiographical memory is widely considered to be fundamentally related to concepts of self and identity. However, few studies have sought to test models of self and memory directly using experimental designs. Using a novel autobiographical fluency paradigm, the present study investigated memory accessibility for different levels of self-related knowledge. Forty participants generated 20 “I am” statements about themselves, from which the 1st, 5th, 10th, 15th, and 20th were used as cues in a two-minute autobiographical fluency task. The most salient aspects of the self, measured by both serial position and ratings of personal significance, were associated with more accessible sets of autobiographical memories. This finding supports theories that view the self as a powerful organizational structure in memory. Results are discussed with reference to models of self and memory.  相似文献   

20.
近似数量加工是对大数目物体数量在不依赖逐个数数前提下的估计。行为学研究提示高数学焦虑人群近似数量加工能力下降, 但神经机制未明。本研究探讨高数学焦虑个体近似数量加工的神经机制, 比较高低数学焦虑脑电活动的差异:(1)行为上无显著组间差异; (2)高数学焦虑组的P2p成分波幅增加; (3) δ频段ERS及β频段ERD无显著数量比例效应, 而低数学焦虑组在上述指标的数量比例效应显著。本研究为高数学焦虑人群近似数量加工能力下降提供了电生理学的证据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号