首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the physiological mechanism of grapheme–color synesthesia using metacontrast masking. A metacontrast target is rendered invisible by a mask that is delayed by about 60 ms; the target and mask do not overlap in space or time. Little masking occurs, however, if the target and mask are simultaneous. This effect must be cortical, because it can be obtained dichoptically. To compare the data for synesthetes and controls, we developed a metacontrast design in which nonsynesthete controls showed weaker dichromatic masking (i.e., the target and mask were in different colors) than monochromatic masking. We accomplished this with an equiluminant target, mask, and background for each observer. If synesthetic color affected metacontrast, synesthetes should show monochromatic masking more similar to the weak dichromatic masking among controls, because synesthetes could add their synesthetic color to the monochromatic condition. The target–mask pairs used for each synesthete were graphemes that elicited strong synesthetic colors. We found stronger monochromatic than dichromatic U-shaped metacontrast for both synesthetes and controls, with optimal masking at an asynchrony of 66 ms. The difference in performance between the monochromatic and dichromatic conditions in the synesthetes indicates that synesthesia occurs at a later processing stage than does metacontrast masking.  相似文献   

2.
Three test and three mask energies were varied orthogonally and randomly over trials. The stimulus onset asynchrony (ISOA) separating test and mask was varied between trial blocks within each of two display conditions, apparent movement (two-object) and metacontrast (threeobject). Subjects were required to makebrightness judgments of both test and mask energies by responding “bright,” “medium,” or “dim” with respect to the apparent intensity of each stimulus. The accuracy and the coherence lconsistencyt of test judgments were U-shaped functions of SOA for both apparent movement and metacontrast situations. However, the accuracy and the coherence of mask judgments did not vary with SOA for either apparent movement or metacontrast. It was noted that substantially the same results have been reported previously when subjects were required to makecontour judgments. Hence, it is argued that apparent movement and metacontrast suppression are intimately related.  相似文献   

3.
OBJECT SUBSTITUTION:   总被引:9,自引:0,他引:9  
Abstract —Can four dots that surround, but do not touch, a target shape act as a mask to reduce target discriminability? Although existing theories of metacontrast and pattern masking say "no." we report this occurs when targets appear in unpredictable locations. In three experiments, a four-dot mask was compared with a standard metacontrast mask that surrounded the target. Although accuracy was predictably different for the two masks at a central display location in Experiment I. both masks had similar strong effects on accuracy in parafoveal locations. Experiment 2 revealed that both four-dot and metacontrast masking were insensitive to contour proximity in parafoveal display locations, and Experiment 3 showed that four-dot masking could occur even at a central location if attention was distributed among several targets. We propose that targets in unattended locations are coded with low spotiotemporal resolution, leaving them vulnerable to substitution by the four dots when attention is directed to them.  相似文献   

4.
A Reeves 《Perception》1986,15(2):163-172
Rod and cone targets were crossed, in every combination, with rod and cone masks in flanking-bars metacontrast. Strong type-B (U-shaped) metacontrast was obtained in each condition, contrary to the claim that rod and cone masking are independent. In each condition, visibility declined steadily with stimulus-onset asynchrony (SOA) in trials in which target and mask appeared to be simultaneous, and increased with SOA in trials in which they appeared to be successive. The 'U' results from collapsing across these different types of trials, which may reflect distinct monotonic processes in masking. Under the light adaptation conditions used the time, Tmax, at which metacontrast was at a maximum was delayed by about 25 ms if rods, rather than cones, detected the target. Whether rods or cones detected the mask hardly altered Tmax.  相似文献   

5.
Visual metacontrast masking may depend on the time intervals between target and mask in two qualitatively different ways: in type-A masking the smaller the mask delay from target the stronger the masking while in type-B masking maximal masking effect is obtained with a larger temporal delay of the mask. Variability in the qualitative apperance of masking functions has been explained by variability in stimuli parameters and tasks. Recent research on metacontrast masking has surprisingly shown that both of these types of functions can be found with an identical range of stimulation parameters depending on individual differences between observers. Here we show that obtaining clear-cut type-A masking depends on whether target and mask shapes are congruent or incongruent and whether observers use the cues available due to the congruence factor. Conspicuously expressed type-A masking is selectively associated with incongruent target-mask pairings. In the latter conditions target identification level significantly drops with the shortest target-to-mask delays.  相似文献   

6.
Metacontrast, an apparent reduction in brightness of a target that is followed by a non-overlapping mask, has been modeled with simulated neural nets incorporating either recurrent lateral inhibition or forward and backward inhibition with lateral components. A one-layer lateral inhibitory model (B. Bridgeman, 1971, Psychological Review 78, 528-539) and a six-layer model (G. Francis, 1997, Psychological Review 104, 572-594) both simulate the basic metacontrast effect, showing that stimulus-dependent activity that reverberates for some time in the model after stimulus offset is essential to simulate metacontrast. The six-layer model does not simulate monotonic masking with low response criterion, an essential property of metacontrast; the lateral inhibitory model uses duration of reverberation to simulate the criterion. Each model simulates several variations of masking, such as changing the relative energy of target and mask, but neither can handle effects of practice or attention that apparently engage higher processing levels. Copyright 2001 Academic Press.  相似文献   

7.
A briefly flashed target stimulus can become “invisible” when immediately followed by a mask—a phenomenon known as backward masking, which constitutes a major tool in the cognitive sciences. One form of backward masking is termed metacontrast masking. It is generally assumed that in metacontrast masking, the mask suppresses activity on which the conscious perception of the target relies. This assumption biases conclusions when masking is used as a tool—for example, to study the independence between perceptual detection and motor reaction. This is because other models can account for reduced perceptual performance without requiring suppression mechanisms. In this study, we used signal detection theory to test the suppression model against an alternative view of metacontrast masking, referred to as the summation model. This model claims that target- and mask-related activations fuse and that the difficulty in detecting the target results from the difficulty to discriminate this fused response from the response produced by the mask alone. Our data support this alternative view. This study is not a thorough investigation of metacontrast masking. Instead, we wanted to point out that when a different model is used to account for the reduced perceptual performance in metacontrast masking, there is no need to postulate a dissociation between perceptual and motor responses to account for the data. Metacontrast masking, as implemented in the Fehrer–Raab situation, therefore is not a valid method to assess perceptual–motor dissociations.  相似文献   

8.
Three test and three mask energies of a metacontrast display were varied orthogonally and randomly over trials. The stimulus onset asynchrony (SOA) separating them was varied over blocks of trials from 0 to 180 msec in 30-msec steps. Both the accuracy in judging the test and the coherence (consistency) of the judgments were U-shaped functions of SOA. Thus, metacontrast suppression is in part due to inadequate information. In addition, mask energy was found to correlate negatively with judgments of the test at short SO As but positively at longer SOAs. This indicates that part of the masking effect is due to inappropriate use of information. Certain similarities were noted between these findings and those obtained with judgments of frequency in the auditory-recognition masking paradigm. In general, the results indicate that subjects respond to different features of the stimulus situation as SOA varies.  相似文献   

9.
Metacontrast masking occurs when a mask follows a target stimulus in close spatial proximity. Target visibility varies with stimulus onset asynchrony (SOA) between target and mask in individually different ways leading to different masking functions with corresponding phenomenological reports. We used individual differences to determine the processes that underlie metacontrast masking. We assessed individual masking functions in a masked target discrimination task using different masking conditions and applied factor-analytical techniques on measures of sensitivity. Results yielded two latent variables that (1) contribute to performance with short and long SOA, respectively, (2) relate to specific stimulus features, and (3) differentially correlate with specific subjective percepts. We propose that each latent variable reflects a specific process. Two additional processes may contribute to performance with short and long SOAs, respectively. Discrimination performance in metacontrast masking results from individually different weightings of two to four processes, each of which contributes to specific subjective percepts.  相似文献   

10.
The backward masking effects of the offset of a pattern stimulus on the apparent contrast of a target stimulus were determined to be a function of target onset-mask offset asynchrony. With spatially overlapping stimuli and binocular viewing, a monotonic function similar to that characterizing early dark adaptation was obtained; with a dichoptically presented disk onset as target and a surrounding ring offset as mask, a typical U-shaped metacontrast effect as a function of target onset-mask offset asynchrony was obtained. These mask-offset effects are related to the possible roles of (a) peripheral "off" mechanisms and (b) central metacontrast mechanisms in terminating visual response persistence in sustained channels.  相似文献   

11.
Report of a second target (T2) is impaired when presented within 500 ms of the first (T1). This attentional blink (AB) is known to cause a delay in T2 processing during which T2 must be stored in a labile memory buffer. We explored the buffer's characteristics using different types of masks after T2. These characteristics were inferred by determining what attributes of T2 are hindered by a given form of masking. In Experiments 1-3, trailing metacontrast and four-dot masks produced ABs of equal magnitudes, implicating the onset-transient triggered by the mask as the mechanism underlying the AB and strongly suggesting a locus in early vision. In Experiment 4, metacontrast and four-dot masks were presented in a common-onset masking (COM) paradigm in which a brief, combined display of T2 and the mask was followed by a longer display of the mask alone. COM is thought to occur late in the sequence of processing events. No AB occurred with COM, confirming the critical role of the mask's onset transients and ruling out a high-level locus for the labile memory buffer.  相似文献   

12.
There are conflicting views concerning the electrophysiological correlates of visual consciousness. Whereas one view considers a relatively late positive deflection (LP) as a primary correlate of consciousness, another model links consciousness with earlier negativity (VAN). The present experiment utilized metacontrast masking in investigating the electrophysiological correlates of visual consciousness. The participants were presented with target-mask sequences in three stimulus onset asynchronies. The target stimuli were followed by either a metacontrast mask or a similar-looking, but ineffective pseudomask. The results showed that the first deflection that correlated with target visibility was VAN which was followed by LP. We argue that the VAN is the primary correlate target visibility, while the LP reflects later, postperceptual processing stages.  相似文献   

13.
Matsuno T  Tomonaga M 《Perception》2008,37(8):1258-1268
We used the visual-masking paradigm to compare temporal characteristics of chimpanzee vision with those of humans. Two types of masking experiments were conducted. One type involved masking by noise, in which the visibility of the geometric pattern target was tested with a spatially overlapping noise as the mask stimulus. The other type involved paracontrast and metacontrast masking, in which the mask stimuli flanked but did not spatially overlap the target stimuli. Temporal characteristics regarding the visibility of target stimuli, displayed as functions of temporal asynchrony between target and mask stimuli, differed with the mask type in chimpanzees as in humans. Peak deterioration in visibility occurred at the point of minimum temporal asynchrony both in forward and backward masking by noise, but was not at 0 ms temporal asynchrony when the target and mask stimuli did not spatially overlap. These results suggest that chimpanzees and humans share the underlying mechanisms in two kinds of temporal inhibition caused by spatially overlapping and non-overlapping mask stimuli.  相似文献   

14.
A typical trial of this masking experiment involves, in quick succession, presentation of five letters, evocation of an eye movement, and presentation of a spatially localized mask, either a visual-pattern mask or a metacontrast ring. The effect of the mask is to sappress the report of the letter that stimulates the same retinal location, even though the mask appears to cover or surround the letter whose position in real space it shares. Masking is. however, weaker when the eyes move than when they do not. An auxiliary experiment suggests that the spatial aspects of observable (reportable by S) stimulus persistence are unaffected by eye movements, and therefore that observable persistence differs from that susceptible to masking.  相似文献   

15.
A target and a flanking nontarget which shared no primary feature were exposed simultaneously in the parafoveal region of the left or right visual field. The presentation terminated with one of two metacontrast masks, one of which masked the nontarget significantly better than the other. One group of 8 subjects received nontargets which were detected better with one of the metacontrast masks, while another group of 8 subjects received nontargets which were detected better with the other mask. Target identification was significantly better when the nontarget appeared on its foveal side rather than on its peripheral side, and this superiority was independent of accuracy in detecting the nontarget. The lack of consistency of this result with models explaining the parafoveal identification asymmetry in terms of feature perturbations is emphasized. Asymmetric lateral inhibition is suggested as an explanation.  相似文献   

16.
Metacontrast is assessed both by percent accuracy and by the dichotomous sensitivity and criterion measures of a signal-detection model in a forced-choice detection task. The results showed a monotonic increase in sensitivity with increasing mask delay, and an abrupt shift of subjects' response criterion at an 80 ms interstimulus interval. The results are discussed in terms of the interpretational advantages of a signal-detection approach to metacontrast investigation.  相似文献   

17.
For nonmetacontrast (disk-disk) masking, if the outer diameter of the mask equals that of an annulus which produces typical metacontrast functions, U- and W-shaped functions will be obtained if (1) the stimuli are viewed dichoptically and monoptically, respectively. and (2) the mask is no more than about 10 times the energy (luminance x duration) of the target. As this energy ratio is approached, both types of functions become monotonic. These shapes suggest that interactions at different visual-pathway loci may he mapped by visual masking functions.  相似文献   

18.
In an experiment similar to one by Bernstein, Fisicaro, and Fox (1976), subjects were asked to judge the brightness of test stimuli in a metacontrast display. The energies of the test and of the mask varied orthogonally. Various experimental conditions differed with respect to the range of mask energies. Individually, the mask energies were generally weaker than the test energies. The results replicated the main findings of Bernstein et al. (1976) in that judgments of the test were negatively correlated with mask energy at short stimulus onset asynchrony (SOA) but positively correlated at long SOA. These effects were more pronounced when the masks were similar in energy range and level to the tests than when they were wider in energy range and weaker. In general, there was no evidence for the effects of trial-to-trial variation described by Hake, Faust, McIntyre, and Murray  相似文献   

19.
Using a metacontrast masking paradigm, prior studies have shown (a) that a target's color information and form information, can be processed without awareness and (b) that unconscious color processing occurs at early, wavelength-dependent levels in the cortical information processing hierarchy. Here we used a combination of paracontrast and metacontrast masking techniques to explore unconscious color and form priming effects produced by blue, green, and neutral stimuli. We found that color priming in normal observers is significantly reduced when an additional paracontrast mask precedes the target at optimal masking SOAs. However, no reduction of form-priming effects was obtained at similar optimal paracontrast SOAs. We conclude that unconscious color priming depends on an early, wavelength- or stimulus-dependent response of color neurons located at early cortical levels whereas unconscious form priming occurs at later levels.  相似文献   

20.
The U-shaped metacontrast function may result from the superimposition of two monotonic components which reflect the effects of mechanisms similar to the peripheral and central processes suggested for backward pattern masking by Turvey (Psychol Rev 80:1–52, 1973). In an experiment using the disc-ring paradigm, it was demonstrated that the decreasing and increasing branches of the metacontrast function are differently affected by the exposure duration of the mask and a task-irrelevant stimulus (distractor) appearing in the contralateral visual hemifield. The phenomenal representation of masking is different for the two parts of the curve. It is suggested that masking in the second part of the masking function, but not in the first, is related to the control of visual attention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号