首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using a brightness-discrimination task similar to that employed by Bernstein, Proctor, Proctor, and Schurman (1973), masking functions were obtained in two experiments. In Experiment I, test stimulus (TS) and mask stimulus (MS) energies were held constant but luminance and duration were varied reciprocally. The obtained masking functions, plotted as a function of stimulus onset asynchrony (SOA), were of an essentially identical U shape. This suggests that (a) SOA is a more suitable measure of delay than interstimulus interval, and (b) Bloch’s law holds for the requisite discrimination. In Experiment II, TS luminance and MS luminance were varied independently. This was to see whether the MS served as a frame of reference at short SOA, as suggested previously (Bernstein et al, 1973). The results were that this was, in fact, the case and that the transition from comparative to absolute judgment strategies as SOA increases is a major contributor to U-shaped masking functions.  相似文献   

2.
Three test and three mask energies were varied orthogonally and randomly over trials. The stimulus onset asynchrony (ISOA) separating test and mask was varied between trial blocks within each of two display conditions, apparent movement (two-object) and metacontrast (threeobject). Subjects were required to makebrightness judgments of both test and mask energies by responding “bright,” “medium,” or “dim” with respect to the apparent intensity of each stimulus. The accuracy and the coherence lconsistencyt of test judgments were U-shaped functions of SOA for both apparent movement and metacontrast situations. However, the accuracy and the coherence of mask judgments did not vary with SOA for either apparent movement or metacontrast. It was noted that substantially the same results have been reported previously when subjects were required to makecontour judgments. Hence, it is argued that apparent movement and metacontrast suppression are intimately related.  相似文献   

3.
A brief target that is visible when displayed alone can be rendered invisible by a trailing stimulus (metacontrast masking). It has been difficult to determine the temporal dynamics of masking to date because increments in stimulus duration have been invariably confounded with apparent brightness (Bloch's law). In the research reported here, stimulus luminance was adjusted to maintain constant brightness across all durations. Increasing target duration yielded classical U-shaped masking functions, whereas increasing mask duration yielded monotonic decreasing functions. These results are compared with predictions from 6 theoretical models, with the lateral inhibition model providing the best overall fit. It is tentatively suggested that different underlying mechanisms may mediate the U-shaped and monotonic functions obtained with increasing durations of target and mask, respectively.  相似文献   

4.
Two experiments were conducted to examine laterality differences and practice effects under various central backward masking conditions. Critical stimulus onset asynchrony (SOA) was determined for subjects on 3 consecutive days using single letters as target stimuli (TS) and a pattern masking stimulus (MS). There was a right visual field (RVF) advantage on Day 1 but no difference between the visual fields on following days. The decline in the RVF advantage appeared to be dependent upon prior experience with laterally located letters, to be independent of initial experience with a particular set of letters, and to be more pronounced for females than for males. In addition, large improvements in performance were found, particularly between the first and second testing sessions. These practice effects were discussed in terms of the possible development of strategies for enhancing TS features or attenuating MS features.  相似文献   

5.
Three test and three mask energies of a metacontrast display were varied orthogonally and randomly over trials. The stimulus onset asynchrony (SOA) separating them was varied over blocks of trials from 0 to 180 msec in 30-msec steps. Both the accuracy in judging the test and the coherence (consistency) of the judgments were U-shaped functions of SOA. Thus, metacontrast suppression is in part due to inadequate information. In addition, mask energy was found to correlate negatively with judgments of the test at short SO As but positively at longer SOAs. This indicates that part of the masking effect is due to inappropriate use of information. Certain similarities were noted between these findings and those obtained with judgments of frequency in the auditory-recognition masking paradigm. In general, the results indicate that subjects respond to different features of the stimulus situation as SOA varies.  相似文献   

6.
In metacontrast masking, the effect of a visual mask stimulus on the perceptual strength of a target stimulus varies with the stimulus-onset asynchrony (SOA) between them. As SOA increases, the target percept first becomes weaker, bottoms out at an intermediate SOA, and then increases for still larger SOAs. As a result, a plot of target percept strength against SOA produces a U-shaped masking curve. Theories have proposed special mechanisms to account for this curve, but new mathematical analyses indicate that it is a robust characteristic of a large class of neurally plausible systems. The author describes 3 quantitative methods of accounting for the U-shaped masking effect and analyzes 4 previously published mathematical models of masking. The models produce the masking curve through mask blocking, whereby a strong internal representation of the target blocks the mask's effects.  相似文献   

7.
Two experiments are reported which investigated whether or not the offset of light can serve as a backward masking stimulus (MS). In both studies, human Os made identification responses to graphemes (TS) presented tachistoscopically on a lighted field. Simultaneously with or at short intervals after TS offset, the lighted background field was shut off. The termination of the background field served as the MS. The results indicated a reliable masking effect due to light  相似文献   

8.
Several studies of metacontrast masking in the 1960s apparently showed that the latency of simple detection responses was uninfluenced by the phenomenal dimming of the target induced by the mask. More recent studies using more suitable methodologies have clearly shown that such is not the case for situations in which the masking is a monotonically decreasing function of stimulus onset asynchrony. Experiment 1 investigated this issue for the situation in which masking is a U-shaped function of stimulus onset asynchrony. Contrary to the results obtained in monotonic masking situations, simple detection responses were not slowed by the masking. Experiment 2 demonstrated that although detection responses are not slowed in the U-shaped masking situation, spatial-choice judgments are. Experiments 3 and 4 indicated that this masking effect on spatial-choice reaction time is lost relatively rapidly with practice. However, changing the stimulus-response assignments reinstates the effect. The experiments suggest that for the situation in which U-shaped masking functions are obtained, responses that require attention (spatial-choice judgments early in practice or after stimulus-response relationships have been switched) are influenced by the metacontrast-induced phenomenal dimming, whereas responses that are automatic (i.e., detection responses; practiced spatial-choice judgments with consistent stimulus-response mappings) are not.  相似文献   

9.
Metacontrast masking occurs when a mask follows a target stimulus in close spatial proximity. Target visibility varies with stimulus onset asynchrony (SOA) between target and mask in individually different ways leading to different masking functions with corresponding phenomenological reports. We used individual differences to determine the processes that underlie metacontrast masking. We assessed individual masking functions in a masked target discrimination task using different masking conditions and applied factor-analytical techniques on measures of sensitivity. Results yielded two latent variables that (1) contribute to performance with short and long SOA, respectively, (2) relate to specific stimulus features, and (3) differentially correlate with specific subjective percepts. We propose that each latent variable reflects a specific process. Two additional processes may contribute to performance with short and long SOAs, respectively. Discrimination performance in metacontrast masking results from individually different weightings of two to four processes, each of which contributes to specific subjective percepts.  相似文献   

10.
We analyzed the relationship between U-shaped and monotonic-shaped masking functions, using both computer simulations of quantitative models and experimental data. Our analysis revealed that quantitative models of backward masking predict that U-shaped masking functions should appear for weak masks and monotonic masking functions should appear for strong masks. The models predict, moreover, that for a fixed target and experimental task, as the mask changes it is possible to go from U-shaped to monotonic-shaped masking functions. Significantly, the models predict that at each stimulus onset asynchrony between the target and the mask, the U-shaped function must have weaker masking than the monotonic-shaped function. Contrary to the predictions of the models, we show an experimental situation that generates masking functions that violate this prediction.  相似文献   

11.
Masking of the perception of an electrical test stimulus by a mechanical shock was studied in six Ss. Forward and backward masking were observed in all Ss, the former being of longer duration. Duration of the masking effects is inversely related to the intensity of the test stimulus. Masking effects may be preceded and followed by perceptual facilitation. The masking effects may be responsible for the alterations in the perception of a somaesthetic stimulus before and during movement of the stimulated area.  相似文献   

12.
Due to the theoretical interest in whether U-shaped visual masking functions are obtained when discrimination responses are required of the Ss, an attempt was made to replicate the Weisstein and Haber (1965) experiment. The attempt was unsuccessful. The results indicated that masking was uniform over a temporal range of approximately 50 msec. The possibility of individual differences in the shape of masking functions was investigated in two subsequent experiments with negative results. Overall, the results of the three experiments supported a temporal integration account of masking when assessed by detection or discrimination criteria. Some possible reasons for discrepancies with the Weisstein and Haber (1965) experiment were considered.  相似文献   

13.
Three experiments were conducted to measure the temporal integration of vibrotactile patterns presented to the fingertip. In Experiment 1, letters were divided in half and the time between the onsets of the first half of the letter and second half of the letter, stimulus onset asynchrony (SOA), was varied. The recognizability of the letters declined as the SOA was increased from 9 to 100 msec. In Experiment 2, the time between two patterns constituting a masking stimulus was varied and the stimulus effectiveness in interfering with letter recognition was determined. The amount of masking increased as the SOA increased from 9 to 50 msec. In Experiment 3, the SOA between a letter and its complement (the portions of the tactile array not activated by the letter) was varied. Increasing SOA from 9 to approximately 50 msec led to increasingly accurate letter recognition. The results of the three experiments suggest that the skin is capable of complete temporal integration over a time period of less than 10 msec, and that the temporal integration function becomes asymptotic in 50 to 100 msec. The results also suggest that the onset of a vibrotactile pattern is critical for generating contours. The implications of the results for modes of generating tactile patterns and for temporal masking functions are discussed.  相似文献   

14.
The effects of variations in stimulus duration and interstimulus onset interval on ratings of tactile apparent movement were determined for seven Ss with stimulators of very small diameter. Judgments of successiveness and simultaneity were also obtained. It was found that apparent movement increased as a power function of increases in stimulus duration. The function relating tactile apparent movement and stimulus duration was shown to be similar to that obtained by Kolers (1964) for visual apparent movement, lnterstimulus onset interval also had a marked effect on apparent movement, and the optimal interval was influenced by stimulus duration in a manner similar to that reported by Sherrick and Rogers (1966).  相似文献   

15.
To study the question of which processes contribute to crowding and whether these are comparable to those of visual temporal masking, we varied the stimulus onset asynchrony (SOA) between target and flankers in a crowding setting. Monotonically increasing Type A masking functions observedfor small spacings and large eccentricities indicate that the integration of information from target and flankers underlies crowding. Decreasing masking functions obtained for large spacings and small eccentricities relate processes of crowding to those contributing to Type B masking. In addition, Type B masking was more frequent with letter-like nonletter flankers than with letter flankers, suggesting that Type B masking, just like crowding over large areas, is due to higher level interactions. The rapid decrease of the effects of interletter spacing and eccentricity with increasing SOA indicates that positional information is transient.  相似文献   

16.
Three experiments were conducted to test the proposition that engagement in motor activity in a given direction favors the perception of stimulus movement consistent with that direction. Ss simultaneously turned a crank and viewed a stimulus capable of apparent reversal of direction.Experiments 1A and 1B demonstrated that the perceived initial direction of rotation was more stable when it was consistent with the motor activity of the viewer than when it was inconsistent. Experiment 2 demonstrated that when Ss were instructed to perceive a particular direction of rotation for a period of time they tended to engage in motor activity consistent withthatdirection.The results were interpreted as supporting an efference theory of perception.  相似文献   

17.
Instead of using percent correct identifications or detections as the dependent variable, latency in voicing the target stimulus was measured in a backward masking paradigm. Reaction time (RT) to target letters was reliably increased when they were simultaneously encircled by a black ring mask of a size found to produce masking using an identification or detection criterion. The masking function in terms of RT was typical in shape, a decreasing function of stimulus onset asynchrony (SOA) over an interval of 150 msec. Since the target remained “on” when the mask appeared, the results are incompatible with an erasure interpretation of masking effects. Analyses of the variances of the RTs supported an interpretation of a progressive decrease in masking effects as SOA increased.  相似文献   

18.
Masking of and by tactile pressure stimuli was investigated in six Ss as a function of stimulus intensity (force) and stimulus onset asynchrony. Increase in the force of the masked stimulus and decrease in the force of the masking stimulus were inversely related to the magnitude of masking, as defined by either a relative or an absolute decrease in sensitivity. The introduction of stimulus onset asynchrony produced both forward and backward masking, the latter being of somewhat larger magnitude. Comparisons are made with results obtained in visual metacontrast masking.  相似文献   

19.
The backward masking effects of the offset of a pattern stimulus on the apparent contrast of a target stimulus were determined to be a function of target onset-mask offset asynchrony. With spatially overlapping stimuli and binocular viewing, a monotonic function similar to that characterizing early dark adaptation was obtained; with a dichoptically presented disk onset as target and a surrounding ring offset as mask, a typical U-shaped metacontrast effect as a function of target onset-mask offset asynchrony was obtained. These mask-offset effects are related to the possible roles of (a) peripheral "off" mechanisms and (b) central metacontrast mechanisms in terminating visual response persistence in sustained channels.  相似文献   

20.
To investigate the locus of signal probability effects and the influence of stimulus quality on this locus, the authors manipulated probability in Task 2 of a psychological refractory period (PRP) paradigm. The effect was additive with stimulus onset asynchrony (SOA) when the target was not masked but underadditive with decreasing SOA when the target was masked. Even with masking, however, a range of probabilities had effects additive with SOA. The results suggest loci of stimulus probability before the PRP bottleneck as well as at or after the bottleneck. A second issue addressed was the locus of interference in the attentional blink (AB). The AB was larger when the probability of the first of 2 targets was lower. The results lead to the conclusion that one cause of the AB effect is a locus at least as late as the PRP bottleneck.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号