首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In humans, multisensory interaction is an important strategy for improving the detection of stimuli of different nature and reducing the variability of response. It is known that the presence of visual information affects the auditory perception in the horizontal plane (azimuth), but there are few researches that study the influence of vision in the auditory distance perception. In general, the data obtained from these studies are contradictory and do not completely define the way in which visual cues affect the apparent distance of a sound source. Here psychophysical experiments on auditory distance perception in humans are performed, including and excluding visual cues. The results show that the apparent distance from the source is affected by the presence of visual information and that subjects can store in their memory a representation of the environment that later improves the perception of distance.  相似文献   

3.
The perception of distance in open fields was widely studied with static observers. However, it is a fact that we and the world around us are in continuous relative movement, and that our perceptual experience is shaped by the complex interactions between our senses and the perception of our self-motion. This poses interesting questions about how our nervous system integrates this multisensory information to resolve specific tasks of our daily life, for example, distance estimation. This study provides new evidence about how visual and motor self-motion information affects our perception of distance and a hypothesis about how these two sources of information can be integrated to calibrate the estimation of distance. This model accounts for the biases found when visual and proprioceptive information is inconsistent.  相似文献   

4.
Visually guided distance perception reflects a relationship of geometrical optical variables with the effort required when traversing the distance. We probed how the representations encoding optical variables might define this relationship. Participants visually judged distances on sloped surfaces and reproduced these distances over flat terrain by walking while blindfolded. We examined the responses for the effects of optical variables (i.e., angular declinations from eye height) and tested whether four measures of trial-by-trial effort moderated the use of the represented optical variables. We predicted that observation time and response speed relative to the observed distance would accentuate the effects of encoded optical variables, and that response time and response speed relative to the traversed distance would reduce the effects of those variables. The results confirmed all of the effects except those of observation time. Given the benefits of longer study for strengthening a memory trace, the failure of observation time to predict the use of optical variables raises questions about the representational encoding of visual traces for distance perception. Relationships among optical variables and other effort measures implicate the interaction of processes across multiple time scales, as in cascade dynamics. Cascade dynamics may provide new directions for accounts of visually guided distance perception.  相似文献   

5.
Experiments are reported in which it was found that, with the angular speed of a visual surround held constant, the perceived speed of rotary self-motion increased linearly with increasing perceived distance of this surround. This finding was in agreement with a motion constancy equation derived from a consideration of object-referred motion perception. Since information concerning distance is necessary for the perception of linear but not angular speed, this finding supports the conclusion that visually perceived rotary self-motion perception is dependent upon perceived linear surround motion at least in the horizontal plane. The visual motion constancy mechanism which operates for object-referred motion can apparently not be switched off for the special case of self-motion perception.  相似文献   

6.
Yamamoto N 《Cognitive processing》2012,13(Z1):S365-S368
It has been shown that active control of locomotion increases accuracy and precision of nonvisual space perception, but psychological mechanisms of this enhancement are poorly understood. The present study explored a hypothesis that active control of locomotion enhances space perception by facilitating crossmodal interaction between visual and nonvisual spatial information. In an experiment, blindfolded participants walked along a linear path under one of the following two conditions: (1) They walked by themselves following a guide rope and (2) they were led by an experimenter. Subsequently, they indicated the walked distance by tossing a beanbag to the origin of locomotion. The former condition gave participants greater control of their locomotion and thus represented a more active walking condition. In addition, before each trial, half the participants viewed the room in which they performed the distance perception task. The other half remained blindfolded throughout the experiment. Results showed that although the room was devoid of any particular cues for walked distances, visual knowledge of the surroundings improved the precision of nonvisual distance perception. Importantly, however, the benefit of preview was observed only when participants walked more actively. This indicates that active control of locomotion allowed participants to better utilize their visual memory of the environment for perceiving nonvisually encoded distance, suggesting that active control of locomotion served as a catalyst for integrating visual and nonvisual information to derive spatial representations of higher quality.  相似文献   

7.
In two experiments we examined the role of visual horizon information on absolute egocentric distance judgments to on-ground targets. Sedgwick [1983, in Human and Machine Vision (New York: Academic Press) pp 425-458] suggested that the visual system may utilize the angle of declination from a horizontal line of sight to the target location (horizon distance relation) to determine absolute distances on infinite ground surfaces. While studies have supported this hypothesis, less is known about the specific cues (vestibular, visual) used to determine horizontal line of sight. We investigated this question by requiring observers to judge distances under degraded vision given an unaltered or raised visual horizon. The results suggest that visual horizon information does influence perception of absolute distances as evident through two different action-based measures: walking or throwing without vision to previously viewed targets. Distances were judged as shorter in the presence of a raised visual horizon. The results are discussed with respect to how the visual system accurately determines absolute distance to objects on a finite ground plane and for their implications for understanding space perception in low-vision individuals.  相似文献   

8.
以表象看到一个运动员完成三级跳远项目为实验任务,对表象任务的信息通达水平、眼动注视点的活动位置和被试对三级跳远项目的知识水平和技能水平进行系统的操纵,通过2个实验探讨了视觉表象眼动的变化是基于知识学习表征差异还是技能训练表征差异的问题。实验1以没有三级跳远运动专业技能知识且对该运动的认知水平也较低的大学生为被试,结果表明,在完成高信息通达水平的表象任务时,注视点需要较短的持续时间,但眼跳距离会增大,眼跳频率会变低;实验2对表象任务的知识学习表征水平和技能训练表征水平进行操纵,分别以对实验任务进行过知识学习和专业技能训练的人为被试,结果表明,随着被试知识习得水平和技能水平表征能力的提高,不同表象任务信息通达水平间的眼动差异将消失,但知识学习和技能表征的差异在平均眼跳时间上有差异,技能训练型的被试其平均眼跳时间要短于知识学习型被试,达到临界水平显著,注视点平均持续时间和平均眼跳距离等均没有差异。  相似文献   

9.
The authors used a virtual environment to investigate visual control of reaching and monocular and binocular perception of egocentric distance, size, and shape. With binocular vision, the results suggested use of disparity matching. This was tested and confirmed in the virtual environment by eliminating other information about contact of hand and target. Elimination of occlusion of hand by target destabilized monocular but not binocular performance. Because the virtual environment entails accommodation of an image beyond reach, the authors predicted overestimation of egocentric distances in the virtual relative to actual environment. This was confirmed. The authors used -2 diopter glasses to reduce the focal distance in the virtual environment. Overestimates were reduced by half. The authors conclude that calibration of perception is required for accurate feedforward reaching and that disparity matching is optimal visual information for calibration.  相似文献   

10.
In human adults two functionally and neuro‐anatomically separate systems exist for the use of visual information in perception and the use of visual information to control movements (Milner & Goodale, 1995 , 2008 ). We investigated whether this separation is already functioning in the early stages of the development of reaching. To this end, 6‐ and 7‐month‐old infants were presented with two identical objects at identical distances in front of an illusory Ponzo‐like background that made them appear to be located at different distances. In two further conditions without the illusory background, the two objects were presented at physically different distances. Preferential reaching outcomes indicated that the allocentric distance information contained in the illusory background affected the perception of object distance. Yet, infants' reaching kinematics were only affected by the objects' physical distance and not by the perceptual distance manipulation. These findings were taken as evidence for the two‐visual systems, as proposed by Milner and Goodale ( 2008 ), being functional in early infancy. We discuss the wider implications of this early dissociation.  相似文献   

11.
Three different sized squares were successively presented at the same physical distance under three observational conditions which provided different information about distance in the visual field. The 60 observers in each observational condition were asked to give verbal absolute judgments of perceived size and perceived distance for each of the squares. The results showed that in a full-cue situation a ratio of perceived absolute sizes is equal to that of the corresponding visual angles, with perceived distances appearing equal to each other; in a reduced-cue situation an object of smaller perceived size is judged to be farther away than one of larger perceived size, with the observers tending to assume the two objects as the same object or identically sized objects. These results were analyzed in terms of the perceptual conflict between primary perception and secondary perception.  相似文献   

12.
Some recent studies on the extraretinal contribution to distance perception are reviewed. These experiments demonstrate that vergence can provide reliable information for judgments on the distance of proximal targets in the absence of all other cues. We argue that, although vergence is an unreliable cue at large fixation distances and is subject to a strong contraction bias when studied in isolation, these facts do not imply a minor role for vergence in near-space perception. When additional depth and distance cues are added, the contribution of vergence information becomes more complicated. We present results which indicate that the different cues to depth and distance are combined in a manner that can result in unexpected distortions of visual space. A simple heuristic model which can produce the observed distortions is outlined.  相似文献   

13.
Although there are many well-known forms of visual cues specifying absolute and relative distance, little is known about how visual space perception develops at small temporal scales. How much time does the visual system require to extract the information in the various absolute and relative distance cues? In this article, we describe a system that may be used to address this issue by presenting brief exposures of real, three-dimensional scenes, followed by a masking stimulus. The system is composed of an electronic shutter (a liquid crystal smart window) for exposing the stimulus scene, and a liquid crystal projector coupled with an electromechanical shutter for presenting the masking stimulus. This system can be used in both full- and reduced-cue viewing conditions, under monocular and binocular viewing, and at distances limited only by the testing space. We describe a configuration that may be used for studying the microgenesis of visual space perception in the context of visually directed walking.  相似文献   

14.
通过两个实验探讨了视觉表象任务信息的通达对表象加工眼动的影响。结果表明, 在低通达条件下, 表象任务的眼动复制了知觉任务的眼动; 随着表象任务信息通达水平的提高, 眼动的注视点平均持续时间、平均眼跳距离和平均眼跳时间会发生规律性变化; 眼动控制与任务信息通达水平对表象眼动的影响存在不同的机制。实验结果佐证了眼动在视觉表象中起机能性作用的观点。  相似文献   

15.
Optical motions as information for unsigned depth   总被引:1,自引:0,他引:1  
Optical motions and gradients of retinal flow have been assumed to be an important source of information for the perception of spatial layout. In the case of lateral parallax, however, the complicating effects of smooth eye movements on retinal flow fields and the known insensitivity of the visual system to absolute motion suggest that optical motions alone cannot provide the basis for accurate perception of the direction (sign) of depth relations. At most they can provide information for "unsigned" depth. Results of two experiments support the view that differential optical motions result in a strong impression of separation of objects in depth, but that the determination of near/far relations normally depends on other sources of information.  相似文献   

16.
A relative-perceived-size hypothesis is proposed to account for the perception of size and distance under monocular observation in reduced-cue settings. This hypothesis is based on two assumptions. In primary processing, perceived size is determined by both proximal stimulation on the retina and distance information from primary cues such as oculomotor cues. In secondary processing, the relation of two primary perceived sizes determines another relation of secondary perceived distances, so that an object of smaller primary perceived size is judged to be further away. An experiment was designed to test this hypothesis, especially the assumption of secondary processing, by making ratio judgments of perceived size and perceived distance for two successively presented targets. The Standard square was presented at a constant distance and varied in visual angle; the variable square was presented with a constant visual angle in distance. The results showed that an inverse relation between size and distance estimates held regardless of whether the visual angles of the targets were the same or different.  相似文献   

17.
Our visual space does not appear to change when we scan or shift attention between locations. This appearance of stability implies that the depth information selection process is not crucial for constructing visual space. But we present evidence to the contrary. We focused on space perception in the intermediate distance, which depends on the integration of depth information on the ground. We propose a selection hypothesis that states that the integration process is influenced by where the depth information is selected. Specifically, the integration process inaccurately represents the ground when one samples depth information only from the far ground surface, instead of sequentially from the near to the far ground. To test this, observers matched the depth/length of a sagittal bar (test) to the width of a laterally oriented bar (reference) in three conditions in a full-cue environment that compelled the visual system to sample from different parts of the ground. These conditions had the lateral reference bar placed (1) adjacent to the test bar, (2) at the far ground, and (3) at the near ground. We found that the sagittal bar was perceived as shorter in conditions (1) and (2) than in Condition 3. This finding supports the selection hypothesis, since only Condition 3 led to more accurate ground surface integration/representation and less error in relative distance/depth perception. Also, we found that performances in all three conditions were similar in the dark, which has no depth information on the ground, indicating that the results cannot be attributed to asymmetric visual scanning but, rather, to differential information selection.  相似文献   

18.
For 35 to 39 days, four observers wore continuously left-right reversing spectacles which pseudoscopically reverse the order of binocular disparity and direction of convergence. In three tests, we investigated how the visual system copes with the transformation of depth and distance information due to the reversing spectacles. In stereogram observation, after a few days of wearing the spectacles. the observers sometimes perceived a depth order which was opposite to the depth order that they had perceived in the pre-spectacle-wearing period. Monocular depth cues contributed more to depth perception in the spectacle-wearing period than they did in the pre-spectacle-wearing period. While the perceived distance significantly decreased during the spectacle-wearing period, we found no evidence of adaptive change in distance perception. The results indicate that the visual system adapts itself to the transformed situation by not only changing the processing of disparity but also by changing the relative efficiency of each cue in determining apparent depth.  相似文献   

19.
We investigated the information that supports perception of whether an object is within reach using a locomotor task. Participants adjusted their own position relative to a fixed target by stepping or by propelling a wheelchair until they judged it to be within reach. The to-be-reached object was presented in virtual reality. The display of the target was driven in real time as a function of the observer's movement, thus depicting a stationary virtual object at a definite distance only through the relation across optical and nonoptical patterns of stimulation. We asked participants to judge the distance they could reach with their unaided hand or when holding a rod that extended their effective reach. They could see neither their body nor the rod thereby limiting available visual information about “reachability.” As expected, our results showed that despite the limited information that was available, participants' locomotor adjustments were influenced by (a) their simulated distance from the target, (b) their arm length, and (c) the presence or absence of the rod. The type of motion (stepping or wheelchair) had little influence. However, judgment accuracy was influenced by participants' initial simulated distance from the target. We compare the performance obtained in our locomotor judgment task with previous studies that have used different methods for measuring perceived reaching-ability. We discuss perceptual information that could have supported performance within the framework of the global array.  相似文献   

20.
We investigated the role of extraretinal information in the perception of absolute distance. In a computer-simulated environment, monocular observers judged the distance of objects positioned at different locations in depth while performing frontoparallel movements of the head. The objects were spheres covered with random dots subtending three different visual angles. Observers viewed the objects ateye level, either in isolation or superimposed on a ground floor. The distance and size of the spheres were covaried to suppress relative size information. Hence, the main cues to distance were the motion parallax and the extraretinal signals. In three experiments, we found evidence that (1) perceived distance is correlated with simulated distance in terms of precision and accuracy, (2) the accuracy in the distance estimate is slightly improved by the presence of a ground-floor surface, (3) the perceived distance is not altered significantly when the visual field size increases, and (4) the absolute distance is estimated correctly during self-motion. Conversely, stationary subjects failed to report absolute distance when they passively observed a moving object producing the same retinal stimulation, unless they could rely on knowledge of the three-dimensional movements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号