首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pitch can be conceptualized as a bidimensional quantity, reflecting both the overall pitch level of a tone (tone height) and its position in the octave (tone chroma). Though such a conceptualization has been well supported for perception of a single tone, it has been argued that the dimension of tone chroma is irrelevant in melodic perception. In the current study, melodies were subjected to structural transformations designed to evaluate the effects of interval magnitude, contour, tone height, and tone chroma. In two transformations, the component tones of a melody were displaced by octave intervals, either preserving or violating the pattern of changes in pitch direction (melodic contour). Replicating previous work, when contour was violated perception of the melody was severely disrupted. In contrast, when contour was preserved the melodies were identified as accurately as the untransformed melodies. In other transformations, a variety of forms of contour information were preserved, while eliminating information for absolute pitch and interval magnitude. The level of performance on all such transformations fell between the levels observed in the other two conditions. These results suggest that the bidimensional model of pitch is applicable to recognition of melodies as well as single tones. Moreover, the results argue that contour, as well as interval magnitude, is providing essential information for melodic perception.  相似文献   

2.
Perceptual hysteresis can be defined as the enduring influence of the recent past on current perception. Here, hysteresis was investigated in a basic auditory task: pitch comparisons between successive tones. On each trial, listeners were presented with pairs of tones and asked to report the direction of subjective pitch shift, as either “up” or “down.” All tones were complexes known as Shepard tones (Shepard, 1964), which comprise several frequency components at octave multiples of a base frequency. The results showed that perceptual judgments were determined both by stimulus-related factors (the interval ratio between the base frequencies within a pair) and by recent context (the intervals in the two previous trials). When tones were presented in ordered sequences, for which the frequency interval between tones was varied in a progressive manner, strong hysteresis was found. In particular, ambiguous stimuli that led to equal probabilities of “up” and “down” responses within a randomized context were almost fully determined within an ordered context. Moreover, hysteresis did not act on the direction of the reported pitch shift, but rather on the perceptual representation of each tone. Thus, hysteresis could be observed within sequences in which listeners varied between “up” and “down” responses, enabling us to largely rule out confounds related to response bias. The strength of the perceptual hysteresis observed suggests that the ongoing context may have a substantial influence on fundamental aspects of auditory perception, such as how we perceive the changes in pitch between successive sounds.  相似文献   

3.
Listeners rated test tones falling in the octave range from middle to high C according to how well each completed a diatonic C major scale played in an adjacent octave just before the final test tone. Ratings were well explained in terms of three factors. The factors were distance in pitch height from the context tones, octave equivalence, and the following hierarchy of tonal functions: tonic tone, other tones of the major triad chord, other tones of a diatonic scale, and the nondiatonic tones. In these ratings, pitch height was more prominent for less musical listeners or with less musical (sinusoidal) tones, whereas octave equivalence and the tonal hierarchy prevailed for musical listeners, especially with harmonically richer tones. Ratings for quarter tones interpolated halfway between the halftone steps of the standard chromatic scale were approximately the averages of ratings for adjacent chromatic tones, suggesting failure to discriminate tones at this fine level of division.  相似文献   

4.
A series of experiments explored the role of structural information in the auditory recognition process, within the context of a backward recognition masking paradigm. A masking tone presented after a test tone has been found to interfere with the perceptual processing of the test tone, the degree of interference decreasing with increased durations of the silent intertone interval between the test and masking tones. In the current studies, the task was modified to utilize three-tone sequences as the test stimuli. Six test sequences were employed (LMH, LHM, MLH, MHL, HLM, HML), where L, M, and H represent the lowest, middle, and highest frequencies in the melody. The observers identified these six possible sequences when the three tones of the test sequence were interleaved with three presentations of a single masking tone. All three tones of the test sequence were drawn from the same octave, while the masking tones could be drawn from any of three octaves, symmetrical around the octave containing the test tones. Under these conditions, interference occurred primarily from masking tones drawn from the same octave as the test tones. Masking tones drawn from other octaves were found to produce little, if any, interference with perception of the test tones. This effect was found to occur only for the identification of tonal sequences. Substantial masking of single-tone targets occurred with masking tones drawn from octaves other than that containing the targets. The results make apparent the use of structural information during auditory recognition. A theoretical interpretation was advanced which suggests that, while single tones are perceived on the basis of absolute pitch, the presence of auditory structure may allow relational information, such as exact pitch intervals or melodic contour, to facilitate perception of the tonal sequence.  相似文献   

5.
The auditory tau and the kappa effects show that there is time-pitch interdependence in our perception. Our judgments of pitch separation between two tones depend on the temporal interval between them (the auditory tau effect), and our judgments of the tones’ temporal interval depend on their pitch separation (the kappa effect). The mechanisms underlying this interdependence were investigated by studying the auditory tau and the kappa effect in three experiments. Comparisons were made between results obtained from subjects with absolute pitch and those who did not have absolute pitch, and two frequency ranges of pure tones (octave and whole-tone conditions) were selected. The procedures had been used in previous experiments (Shigeno, 1986), in which the auditory tau and the kappa effects were compared in speech and nonspeech stimuli. The present results demonstrate that the auditory tau effect does not occur when possessors of absolute pitch judge the closeness of stimuli in pitch, except when the stimulus continuum consists of tones that do not correspond to musical notes in the whole-tone condition. The kappa effect was obtained in the judgment of possessors of absolute pitch in both the octave and the whole-tone conditions. These findings suggest that the interaction between temporal interval and pitch judgment might be explained in terms of the two different memory modes for retaining the pitch of tones, and that these effects occur at the precategorical level.  相似文献   

6.
An investigation was made into the disruptive effects on pitch recognition produced by tones taken from beyond the octave from which the standard (S) and comparison (C) tones were taken. Pitch recognition was required after a retention interval during which eight other tones were played. Errors were compared for sequences in which the interpolated tones were taken from the same octave as were the S and C tones; in which they were taken from the octave above; in which they were taken from the octave below; and in which half of the intervening tones were taken from the octave above and the other half from the octave below, the order of choice of octave within the sequence being random. Large disruptive effects were produced by interpolated tones drawn from the higher and lower octaves, though these effects were slightly less than those produced by tones drawn from the same octave. The greatest disruptive effect occurred when the intervening tones in any one sequence were drawn from both the higher and the lower octaves. The implications of these findings are discussed.  相似文献   

7.
When subjects gave magnitude estimates of 500- and 2500-Hz tones at various SPLs, they judged a 500-Hz tone of 60 dB to be as loud as a 2500-Hz tone of 57 dB in one context (low SPLs at 500 Hz, high SPLs at 2500 Hz), but as loud as a 2500-Hz tone at 40 dB in another context (high SPLs at 500 Hz, low at 2500 Hz) (Marks, 1988). Such shifts in matches derived from judgments of multi-dimensionally varying stimuli are termedslippery context effects. The present set of seven experiments showed that slippery effects were absent from judgments of pitch of tones at different loudnesses, duration of tones at different pitches, and length of lines at different colors, though a small effect emerged in judgments of duration of tones and lights. Slippery context effects were substantial when subjects gave magnitude estimates of loudness of 500- and 2500-Hz tones under conditions in which the pitch at each trial either was cued visually beforehand or could be known through the regular stimulus sequence, and with instructions to make absolute magnitude estimates. The results are consistent with the view that slippery context effects occur automatically and “preattentively.”  相似文献   

8.
The octave illusion (D. Deutsch, 1974) occurs when 2 tones separated by an octave are alternated repeatedly, such that when the right ear receives the high tone, the left ear receives the low tone, and vice versa. Most subjects in the original study reported hearing a single tone that alternated from ear to ear, whose pitch also alternated from octave to octave, and D. Deutsch (1975a) proposed an explanation in terms of separate what and where auditory pathways. C. D. Chambers, J. B. Mattingley, and S. A. Moss (2002) argued that the perceived pitch difference generally corresponds more to a semitone and proposed an alternative explanation in terms of diplacusis. This article argues that Chambers et al. used problematic procedures and reports a new experiment on the octave illusion. The findings confirm that an octave difference is generally perceived, and they agree with the model of Deutsch (1975a) but are at variance with the diplacusis hypothesis.  相似文献   

9.
Shepard (1964) has devised a sequence of synthesized tones that appear to constitute a “circular” pitch dimension; each tone in the sequence appears to be higher in pitch than the preceding one, and yet the first tone also seems higher than the last. Two series of such stimuli (a six-alternative and an eight-alternative set) were used to investigate memory processes in absolute identification performance when end stimuli are unavailable as possible anchors. Clear evidence was obtained for short-term anchoring strategies in this task, but none was obtained for the stable retention of those stimuli corresponding to the ends of the response continuum. The results are examined in the light of Eriksen and Hake’s (1957) subjective-standard hypothesis.  相似文献   

10.
The octave illusion is elicited by a sequence of tones presented to each ear that continuously alternate in frequency by one octave, but with high and low frequencies always in different ears. The percept for most listeners is a high pitch in one ear, alternating with a low pitch in the other ear. The influentialsuppression model of the illusion proposed by Deutsch and Roll (1976) carries three postulates: first, that listeners perceive only the pitch of the tones presented to their dominant ear; second, that this pitch is heard in whichever ear received the higher frequency tone; and third, that this apparent dissociation betweenwhat andwhere mechanisms arises from sequential interactions between the tones. In the present article, we reappraise evidence for the suppression model and demonstrate (1) the incompatibility of the theory with the existing literature on pitch perception, sound localization, and ear dominance and (2) methodological limitations in studies that have claimed to provide support for the suppression model. We conclude by proposing an alternative theory of the octave illusion that is based on established principles of fusion, rather than suppression, between ears.  相似文献   

11.
In 3 experiments, the authors examined short-term memory for pitch and duration in unfamiliar tone sequences. Participants were presented a target sequence consisting of 2 tones (Experiment 1) or 7 tones (Experiments 2 and 3) and then a probe tone. Participants indicated whether the probe tone matched 1 of the target tones in both pitch and duration. Error rates were relatively low if the probe tone matched 1 of the target tones or if it differed from target tones in pitch, duration, or both. Error rates were remarkably high, however, if the probe tone combined the pitch of 1 target tone with the duration of a different target tone. The results suggest that illusory conjunctions of these dimensions frequently occur. A mathematical model is presented that accounts for the relative contribution of pitch errors, duration errors, and illusory conjunctions of pitch and duration.  相似文献   

12.
A series of experiments demonstrated novel effects of amplitude envelope on associative memory, with tones exhibiting naturally decaying amplitude envelopes (e.g., those made by two wine glasses clinking) better associated with target objects than amplitude-invariant tones. In Experiment 1 participants learned associations between household objects and 4-note tone sequences constructed of spectrally matched pure tones with either “flat” or “percussive” amplitude envelopes. Those hearing percussive tones correctly recalled significantly more sequence–object associations. Experiment 2 demonstrated that participants hearing percussive tones learned the associations more quickly. Experiment 3 used “reverse percussive” tones (percussive tones played backwards) to test whether differences in overall energy might account for this effect, finding they did not lead to the same level of performance as percussive tones. Experiment 4 varied the envelope at encoding and retrieval to determine which stage of the task was most affected by the envelope manipulation. Participants hearing percussive tones at both encoding and retrieval performed significantly better than the other three groups (i.e., flat at encoding/percussive at retrieval, etc.). We conclude that amplitude envelope plays an important role in learning and memory, a finding with relevance to psychological research on audition and associative memory, as well as practical relevance for improving human–computer interface design.  相似文献   

13.
Recognition of the pitch of a tone is disrupted by the interpolation of other tones during the retention interval. The disruptive effect of an interpolated tone varies systematically as a function of its pitch relationship to the tone to be remembered, and is maximal at a 2/3-tone separation. When such a tone is interpolated, the interpolation in addition of a further tone that is 2/3 tone removed from this disruptive tone (and 4/3 tone removed from the tone to be remembered) causes recognition of the first tone substantially to return. When recognition performance is plotted as a function of the pitch relationship between these two interpolated tones, the results accord well with a model assuming mutual inhibitory interactions between pitch memory elements.  相似文献   

14.
The acquisition of the hierarchy of tonal stabilities in music is investigated in children of elementary school age. Listeners judge how good short tone sequences sound as melodies. The ratings show a pattern of increasing differentiation of the pitches in an octave range. The youngest listeners distinguish between scale and nonscale tones; older listeners distinguish between the tonic triad tones and other scale components. A group of adult listeners show octave equivalence and temporal asymmetries, with a preference for sequences ending on the more stable tones within the hierarchy. Pitch height effects do not interact with the age of the listener. These results are discussed in terms of the primacy of physical variables, novice-expert differences, and general cognitive principles governing the acquisition and development of internal representations of pitch relationships.  相似文献   

15.
Striking changes in sensitivity to tonality across the pitch range are reported. Participants were presented a key-defining context (do-mi-do-sol) followed by one of the 12 chromatic tones of the octave, and rated the goodness of fit of the probe tone to the context. The set of ratings, called the probe-tone profile, was compared to an established standardised profile for the Western tonal hierarchy. The presentation of context and probe tones at low and high pitch registers resulted in significantly reduced sensitivity to tonality. Sensitivity was especially poor for presentations in the lowest octaves where inharmonicity levels were substantially above the threshold for detection. We propose that sensitivity to tonality may be influenced by pitch salience (or a co-varying factor such as exposure to pitch distributional information) as well as suprathreshold inharmonicity.  相似文献   

16.
The octave illusion occurs when each ear receives a sequence of tones alternating by 1 octave but with the high and low tones in different ears. Most listeners perceive these stimuli as a high pitch in one ear alternating with a low pitch in the other ear. D. Deutsch and P. L. Roll (1976) interpreted this phenomenon as evidence for a what-where division of auditory processing caused by sequential interactions between the tones. They argued that the pitch follows the frequency presented to the dominant ear but is lateralized toward the higher frequency component. This model was examined in 4 experiments. Results indicate that the perceived pitch approximates the fundamental frequency and that the illusion does not depend on sequential interactions. The octave illusion may arise from an interaction between dichotic fusion and binaural diplacusis rather than from suppression as proposed by Deutsch.  相似文献   

17.
The present study was designed to explore serial position and suffix effects in the short-term retention of nonverbal sounds. In contrast with previous studies of these effects, a probe recognition paradigm was used to minimize the possibility that participants would use a verbal labelling strategy. On each trial, participants heard a memory set consisting of three pure tones, followed five seconds later by a probe tone. Participants were required to indicate whether or not the probe tone had been a member of the memory set. On most trials, a suffix sound was presented 1 second following the third sound in the memory set. Results revealed that tones presented in the first and last positions of the memory set were recognized more accurately than were tones presented in the middle position. Furthermore, recognition of sounds presented in the last position was compromised when the memory set was followed by a postlist suffix of similar pitch, spectral composition, and spatial location.  相似文献   

18.
Responsiveness of musically trained and untrained adults to pitch-distributional information in melodic contexts was assessed. In Experiment 1, melodic contexts were pure-tone sequences, generated from either a diatonic or one of four nondiatonic tonesets, in which pitch-distributional information was manipulated by variation of the relative frequency of occurrence of tones from the toneset. Both the assignment of relative frequency of occurrence to tones and the construction of the (fixed) temporal order of tones within the sequences contravened the conventions of western tonal music. A probe-tone technique was employed. Each presentation of a sequence was followed by a probe tone, one of the 12 chromatic notes within the octave. Listeners rated the goodness of musical fit of the probe tone to the sequence. Probe-tone ratings were significantly related to frequency of occurrence of the probe tone in the sequence for both trained and untrained listeners. In addition, probe-tone ratings decreased as the pitch distance between the probe tone and the final tone of the sequence increased. For musically trained listeners, probe-tone ratings for diatonic sequences tended also to reflect the influence of an internalized tonal schema. Experiment 2 demonstrated that the temporal location of tones in the sequences could not alone account for the effect of frequency of occurrence in Experiment 1. Experiment 3 tested musically untrained listeners under the conditions of Experiment 1, with the exception that the temporal order of tones in each sequence was randomized across trials. The effect of frequency of occurrence found in Experiment 1 was replicated and strengthened.  相似文献   

19.
The present study tested quantified predictors based on the bottom-up principles of Narmour’s (1990) implication-realization model of melodic expectancy against continuity ratings collected for a tone that followed a two-tone melodic beginning. Twenty-four subjects (12 musically trained, 12 untrained) were presented with each of eight melodic intervals—two successive tones which they were asked to consider as the beginning of a melody. On each trial, a melodic interval was followed by a third tone, one of the 25 chromatic notes within the range one octave below to one octave above the second tone of the interval. The subjects were asked to rate how well the third tone continued the melody. A series of regression analyses was performed on the continuation ratings, and a final model to account for the variance in the ratings is proposed. Support was found for three of Narmour’s principles and a modified version of a fourth. Support was also found for predictor variables based on the pitch organization of tonal harmonic music. No significant differences between the levels of musical training were encountered.  相似文献   

20.
Perceptual interactions between musical pitch and timbre.   总被引:1,自引:0,他引:1  
These experiments examined perceptual interactions between musical pitch and timbre. Experiment 1, through the use of the Garner classification tasks, found that pitch and timbre of isolated tones interact. Classification times showed interference from uncorrelated variation in the irrelevant attribute and facilitation from correlated variation; the effects were symmetrical. Experiments 2 and 3 examined how musical pitch and timbre function in longer sequences. In recognition memory tasks, a target tone always appeared in a fixed position in the sequences, and listeners were instructed to attend to either its pitch or its timbre. For successive tones, no interactions between timbre and pitch were found. That is, changing the pitches of context tones did not affect timbre recognition, and vice versa. The tendency to perceive pitch in relation to other context pitches was strong and unaffected by whether timbre was constant or varying. In contrast, the relative perception of timbre was weak and was found only when pitch was constant. These results suggest that timbre is perceived more in absolute than in relative terms. Perceptual implications for creating patterns in music with timbre variations are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号