首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prenatal exposure to alcohol and stimulants negatively affects the developing trajectory of the central nervous system in many ways. Recent advances in neuroimaging methods have allowed researchers to study the structural, metabolic, and functional abnormalities resulting from prenatal exposure to drugs of abuse in living human subjects. Here we review the neuroimaging literature of prenatal exposure to alcohol, cocaine, and methamphetamine. Neuroimaging studies of prenatal alcohol exposure have reported differences in the structure and metabolism of many brain systems, including in frontal, parietal, and temporal regions, in the cerebellum and basal ganglia, as well as in the white matter tracts that connect these brain regions. Functional imaging studies have identified significant differences in brain activation related to various cognitive domains as a result of prenatal alcohol exposure. The published literature of prenatal exposure to cocaine and methamphetamine is much smaller, but evidence is beginning to emerge suggesting that exposure to stimulant drugs in utero may be particularly toxic to dopamine-rich basal ganglia regions. Although the interpretation of such findings is somewhat limited by the problem of polysubstance abuse and by the difficulty of obtaining precise exposure histories in retrospective studies, such investigations provide important insights into the effects of drugs of abuse on the structure, function, and metabolism of the developing human brain. These insights may ultimately help clinicians develop better diagnostic tools and devise appropriate therapeutic interventions to improve the condition of children with prenatal exposure to drugs of abuse.  相似文献   

2.
Fetal alcohol syndrome and the developing socio-emotional brain   总被引:1,自引:0,他引:1  
Fetal alcohol syndrome (FAS) is currently recognized as the most common known cause of mental retardation, affecting from 1 to 7 per 1000 live-born infants. Individuals with FAS suffer from changes in brain structure, cognitive impairments, and behavior problems. Researchers investigating neuropsychological functioning have identified deficits in learning, memory, executive functioning, hyperactivity, impulsivity, and poor communication and social skills in individuals with FAS and fetal alcohol effects (FAE). Investigators using autopsy and brain imaging methods have identified microcephaly and structural abnormalities in various regions of the brain (including the basal ganglia, corpus callosum, cerebellum, and hippocampus) that may account for the neuropsychological deficits. Results of studies using newer brain imaging and analytic techniques have indicated specific alterations (i.e., displacements in the corpus callosum, increased gray matter density in the perisylvian regions, altered gray matter asymmetry, and disproportionate reductions in the frontal lobes) in the brains of individuals prenatally exposed to alcohol, and their relations with brain function. Future research, including using animal models, could help inform our knowledge of brain-behavior relations in the context of prenatal alcohol exposure, and assist with early identification and intervention.  相似文献   

3.
4.
Studies of human classification learning using functional neuroimaging have suggested that basal ganglia and medial temporal lobe memory systems may interact during learning. We review these results and outline a set of possible mechanisms for such interactions. Effective connectivity analyses suggest that interaction between basal ganglia and medial temporal lobe are mediated by prefrontal cortex rather than by direct connectivity between regions. A review of possible neurobiological mechanisms suggests that interactions may be driven by neuromodulatory systems in addition to mediation by interaction of inputs to prefrontal cortical neurons. These results suggest that memory system interactions may reflect multiple mechanisms that combine to optimize behavior based on experience.  相似文献   

5.
Memory consolidation is defined temporally based on pharmacological interventions such as inhibitors of mRNA translation (molecular consolidation) or post-acquisition deactivation of specific brain regions (systems level consolidation). However, the relationship between molecular and systems consolidation are poorly understood. Molecular consolidation mechanisms involved in translation initiation and elongation have previously been studied in the cortex using taste-learning paradigms. For example, the levels of phosphorylation of eukaryotic elongation factor 2 (eEF2) were found to be correlated with taste learning in the gustatory cortex (GC), minutes following learning. In order to isolate the role of the eEF2 phosphorylation state at Thr-56 in both molecular and system consolidation, we analyzed cortical-dependent taste learning in eEF2K (the only known kinase for eEF2) ki mice, which exhibit reduced levels of eEF2 phosphorylation but normal levels of eEF2 and eEF2K. These mice exhibit clear attenuation of cortical-dependent associative, but not of incidental, taste learning. In order to gain a better understanding of the underlying mechanisms, we compared brain activity as measured by MEMRI (manganese-enhanced magnetic resonance imaging) between eEF2K ki mice and WT mice during conditioned taste aversion (CTA) learning and observed clear differences between the two but saw no differences under basal conditions. Our results demonstrate that adequate levels of phosphorylation of eEF2 are essential for cortical-dependent associative learning and suggest that malfunction of memory processing at the systems level underlies this associative memory impairment.  相似文献   

6.
Recent theoretical advances describing consciousness from information and integration have highlighted the unique role of the thalamocortical system in leading to integrated information and thus, consciousness. Here, we examined the differential distributions of specific and nonspecific thalamocortical functional connections using resting-state fMRI in a group of healthy subjects and vegetative-state patients. We found that both thalamic systems were widely distributed, but they exhibited different patterns. Nonspecific connections were preferentially associated with brain regions involved in higher-order cognitive processing, self-awareness and introspective mentalizing (e.g., the dorsal prefrontal and anterior cingulate cortices). In contrast, specific connections were prevalent in the ventral and posterior part of the prefrontal and precuneus, known involved in representing externally-directed attentions. Significant reductions of functional connectivity in both systems, especially the nonspecific system, were observed in VS. These data suggest that brain networks sustaining information and integration may be differentiated by the nature of their thalamic functional connectivity.  相似文献   

7.
The discovery of multiple memory systems supported by discrete brain regions has been one of the most important advances in behavioral neuroscience. A wealth of studies have investigated the role of the hippocampus and related structures in supporting various types of memory classifications. While the exact classification that best describes hippocampal function is often debated, a specific subset of cognitive function that is focused on the use of spatial information to form hippocampal cognitive maps has received extensive investigation. These studies frequently employ a variety of experimental manipulations including brain lesions, temporary neural blockade due to cooling or discrete injections of specific drugs. While these studies have provided important insights into the function of the hippocampus, they are limited due to the invasive nature of the manipulation. Ethanol is a drug that is easily administered in a non-invasive fashion, is rapidly absorbed and produces effects only in specific brain regions. The hippocampus is one brain region affected by acute ethanol administration. The following review summarizes research from the last 20 years investigating the effects of acute ethanol administration on one specific type of hippocampal cognitive function, namely spatial memory. It is proposed that among its many effects, one specific action of acute ethanol administration is to produce similar cognitive and neurophysiological effects as lesions of the hippocampus. Based on these similarities and the ease of its use, it is concluded that acute ethanol administration is a valuable tool in studying hippocampal function and multiple memory systems.  相似文献   

8.
On the basis of lesions of different brain areas, several neural systems appear to be important for processing information regarding different types of learning and memory. This paper examines the development of pharmacological and neurochemical approaches to multiple memory systems from past studies of modulation of memory formation. The findings suggest that peripheral neuroendocrine mechanisms that regulate memory processing may target their actions toward those neural systems most engaged in the processing of learning and memory. In addition, measurements of acetylcholine release in different memory systems reveals extensive interactions between memory systems, some cooperative and some competitive. These results imply that many neural systems, often characterized as relatively independent, may in fact interact extensively, blurring the dependencies of different memory tasks on specific neural systems.  相似文献   

9.
Different functions have been suggested for the hippocampus and its subdivisions along both transversal and longitudinal axes. Expression of immediate-early genes (IEGs) has been used to map specific functions onto neuronal activity in different areas of the brain including the hippocampus (IEG imaging). Here we review IEG studies on hippocampal functional dissociations with a particular focus on the CA3 subregion. We first discuss the cellular functions of IEGs and the brain system interactions that govern their dynamic expression in hippocampal neurons to provide a more solid framework for interpreting the findings from IEG studies. We show the pitfalls and shortcomings of conventional IEG imaging studies and describe advanced methods using IEGs for imaging of neuronal activity or functional intervention. We review the current IEG evidence of hippocampal function, subregional-specific contribution to different stages of memory formation, systems consolidation, functional dissociation between memory and anxiety/behavioral inhibition along the septotemporal axis, and different neural network properties of hippocampal subregions. In total, IEG studies provide support for (1) the role of the hippocampus in spatial and contextual learning and memory, (2) its role in continuous encoding of ongoing experience, (3) septotemporal dissociations between memory and anxiety, and (4) a dynamic relationship between pattern separation and pattern completion in the CA3 subregion. In closing, we provide a framework for how cutting-edge IEG imaging and intervention techniques will likely contribute to better understanding of the specific functions of CA3 and other hippocampal subregions.  相似文献   

10.
Cognitive neuroscience of episodic memory encoding   总被引:6,自引:0,他引:6  
This paper presents a cognitive neuroscientific perspective on how human episodic memories are formed. Convergent evidence from multiple brain imaging studies using positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) suggests a role for frontal cortex in episodic memory encoding. Activity levels within frontal cortex can predict episodic memory encoding across a wide range of behavioral manipulations known to influence memory performance, such as those present during levels of processing and divided attention manipulations. Activity levels within specific frontal and medial temporal regions can even predict, on an item by item basis, whether an episodic memory is likely to form. Furthermore, separate frontal regions appear to participate in supplying code-specific information, including distinct regions which process semantic attributes of verbal information as well as right-lateralized regions which process nonverbal information. We hypothesize that activity within these multiple frontal regions provides a functional influence (input) to medical temporal regions that bind the information together into a lasting episodic memory trace.  相似文献   

11.
The basal ganglia and cortico-striato-thalamo-cortical connections are known to play a critical role in sequence skill learning and increasing automaticity over practice. The current paper reviews four studies comparing the sequence skill learning and the transition to automaticity of persons who stutter (PWS) and fluent speakers (PNS) over practice. Studies One and Two found PWS to have poor finger tap sequencing skill and nonsense syllable sequencing skill after practice, and on retention and transfer tests relative to PNS. Studies Three and Four found PWS to be significantly less accurate and/or significantly slower after practice on dual tasks requiring concurrent sequencing and colour recognition over practice relative to PNS. Evidence of PWS’ deficits in sequence skill learning and automaticity development support the hypothesis that dysfunction in cortico-striato-thalamo-cortical connections may be one etiological component in the development and maintenance of stuttering.

Educational objectives: As a result of this activity, the reader will: (1) be able to articulate the research regarding the basal ganglia system relating to sequence skill learning; (2) be able to summarize the research on stuttering with indications of sequence skill learning deficits; and (3) be able to discuss basal ganglia mechanisms with relevance for theory of stuttering.  相似文献   


12.
The advent of neuroimaging methods such as functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) has provided investigators with a tool to study neuronal processes involved in cognitive functions in humans. Recent years have seen an increasing amount of studies which mapped higher cognitive functions to specific brain regions. These studies have had a great impact on our understanding of neuroanatomical correlates of learning and memory in the living human brain. Recently, advances were made to go beyond the use of fMRI as a pure cognitive brain mapping device. One of these advances includes the use of psychopharmacological approaches in conjunction with neuroimaging. The paper will introduce the combination of neuroimaging and psychopharmacology as a tool to study neurochemical modulation of human brain function. A review of imaging studies using cholinergic challenges in the context of explicit and implicit learning and memory paradigms is provided which show that cholinergic neurotransmission modulates task-related activity in sensory and frontal cortical brain areas.  相似文献   

13.
Building on our previous neurocomputational models of basal ganglia and hippocampal region function (and their modulation by dopamine and acetylcholine, respectively), we show here how an integration of these models can inform our understanding of the interaction between the basal ganglia and hippocampal region in associative learning and transfer generalization across various patient populations. As a common test bed for exploring interactions between these brain regions and neuromodulators, we focus on the acquired equivalence task, an associative learning paradigm in which stimuli that have been associated with the same outcome acquire a functional similarity such that subsequent generalization between these stimuli increases. This task has been used to test cognitive dysfunction in various patient populations with damages to the hippocampal region and basal ganglia, including studies of patients with Parkinson’s disease (PD), schizophrenia, basal forebrain amnesia, and hippocampal atrophy. Simulation results show that damage to the hippocampal region—as in patients with hippocampal atrophy (HA), hypoxia, mild Alzheimer’s (AD), or schizophrenia—leads to intact associative learning but impaired transfer generalization performance. Moreover, the model demonstrates how PD and anterior communicating artery (ACoA) aneurysm—two very different brain disorders that affect different neural mechanisms—can have similar effects on acquired equivalence performance. In particular, the model shows that simulating a loss of dopamine function in the basal ganglia module (as in PD) leads to slow acquisition learning but intact transfer generalization. Similarly, the model shows that simulating the loss of acetylcholine in the hippocampal region (as in ACoA aneurysm) also results in slower acquisition learning. We argue from this that changes in associative learning of stimulus–action pathways (in the basal ganglia) or changes in the learning of stimulus representations (in the hippocampal region) can have similar functional effects.  相似文献   

14.
We present a framework for understanding how the hippocampus, neocortex, and basal ganglia work together to support cognitive and behavioral function in the mammalian brain. This framework is based on computational tradeoffs that arise in neural network models, where achieving one type of learning function requires very different parameters from those necessary to achieve another form of learning. For example, we dissociate the hippocampus from cortex with respect to general levels of activity, learning rate, and level of overlap between activation patterns. Similarly, the frontal cortex and associated basal ganglia system have important neural specializations not required of the posterior cortex system. Taken together, this overall cognitive architecture, which has been implemented in functioning computational models, provides a rich and often subtle means of explaining a wide range of behavioral and cognitive neuroscience data. Here, we summarize recent results in the domains of recognition memory, contextual fear conditioning, effects of basal ganglia lesions on stimulus-response and place learning, and flexible responding.  相似文献   

15.
Despite their purported neuroanatomic and functional isolation, empirical evidence suggests that sometimes conscious explicit processes can influence implicit motor skill learning. Our goal was to determine if the provision of explicit information affected implicit motor-sequence learning after damage to the basal ganglia. Individuals with stroke affecting the basal ganglia (BG) and healthy controls (HC) practiced a continuous implicit motor-sequencing task; half were provided with explicit information (EI) and half were not (No-EI). The focus of brain damage for both BG groups was in the putamen. All of the EI participants were at least explicitly aware of the repeating sequence. Across three days of practice, explicit information had a differential effect on the groups. Explicit information disrupted acquisition performance in participants with basal ganglia stroke but not healthy controls. By retention (day 4), a dissociation was apparent--explicit information hindered implicit learning in participants with basal ganglia lesions but aided healthy controls. It appears that after basal ganglia stroke explicit information is less helpful in the development of the motor plan than is discovering a motor solution using the implicit system alone. This may be due to the increased demand placed on working memory by explicit information. Thus, basal ganglia integrity may be a crucial factor in determining the efficacy of explicit information for implicit motor-sequence learning.  相似文献   

16.
Amnesia refers to a disorder of memory, and classical amnesia with continuous problems in aquiring new information is the most studied type of amnesia. The integration into a memory systems model of clinical studies of classical amnesia, cognitive theory, and studies with neuroimaging methods is one of the prime success stories in modern cognitive neuroscience. The clinical spectrum of amnesia encompasses a wide range of disorders ranging from specific encoding deficits for language or visuospatial information to psychogenic amnesia with confusion and loss of memory for personal identity. Two cases are reviewed, one with selective verbal amnesia and the other with focal retrograde amnesia, presenting some puzzles and challenges to current modular thinking about memory that may lead to theoretical advances. An interactive model emphasizing the communication between brain codes and regions in memory may have promise.  相似文献   

17.
Literacy and numeracy are important skills that are typically learned during childhood, a time that coincides with considerable shifts in large‐scale brain organization. However, most studies emphasize focal brain contributions to literacy and numeracy development by employing case‐control designs and voxel‐by‐voxel statistical comparisons. This approach has been valuable, but may underestimate the contribution of overall brain network organization. The current study includes children (N = 133 children; 86 male; mean age = 9.42, SD = 1.715; age range = 5.92–13.75y) with a broad range of abilities, and uses whole‐brain structural connectomics based on diffusion‐weighted MRI data. The results indicate that academic attainment is associated with differences in structural brain organization, something not seen when focusing on the integrity of specific regions. Furthermore, simulated disruption of highly‐connected brain regions known as hubs suggests that the role of these regions for maintaining the architecture of the network may be more important than specific aspects of processing. Our findings indicate that distributed brain systems contribute to the etiology of difficulties with academic learning, which cannot be captured using a more traditional voxel‐wise statistical approach.  相似文献   

18.
Much of our behavior is guided by rules, or prescribed guides for action. In this review, I consider the current state of knowledge of how rules are learned, stored in the brain, and retrieved and used as the need arises. The focus is primarily on studies in humans, but the review is informed by relevant studies in nonhuman primates. Ventrolateral prefrontal cortex (VLPFC) has been implicated in rule learning, retrieval from long-term memory, and on-line maintenance during task preparation. Interactions between VLPFC and temporal cortex are required for rule retrieval in nonhuman primates, and brain imaging findings in humans suggest that rule knowledge is stored in the posterior middle temporal gyrus. Dorsolateral PFC appears to be more closely related to rule-based response selection than to rule retrieval. An important task for the future is to explain how PFC, basal ganglia, and temporal, parietal, and motor cortices interact to produce rule-guided behavior.  相似文献   

19.
Although it is well-established that the cerebral cortex is a substrate for learning, memory and higher cognitive functions, rather less is known about the mechanisms by which experiences are acquired and stored in the cortex. The role of the basal forebrain cholinergic system (BFCS) in learning-induced plasticity is underlined by a recent report by Kilgard and Merzenich[1]. In this article I will discuss the findings of Kilgard and Merzenich in the context of other developments in our understanding of the BFCS and its role in learning-induced plasticity. However, before the discussion I would like to provide some essential background information.  相似文献   

20.
内隐学习潜在机制研究的某些新进展   总被引:1,自引:0,他引:1  
内隐学习需要一定的注意和工作记忆参与,但关于它们影响内隐学习过程的潜在机制尚存在争议;随着内隐序列学习研究的深入,研究们开始关注序列知识的表征问题,这为揭示内隐知识的潜在表征机制开辟了新的途径;有关内隐学习神经机制的研究表明,基底神经节、联合区、额叶在内隐学习中起重要作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号