首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 538 毫秒
1.
An experiment demonstrated a complete hemispheric processing reversal in 10 male, dysphonetic dyslexic children that occurred during a dichotic listening test of their verbal working memory. Requiring a written response to dichotic digits produced a right hemisphere/left ear superiority in the dysphonetic dyslexics whereas normal subjects and other dyslexics maintained a left hemisphere/right ear advantage. This reversal was unaffected by changes in task difficulty. A second experiment assessed the influence on producing the reversal of concurrent manual interference with left hemisphere verbal processing (responding orally vs. manually) and selective right hemisphere priming (Forward Writing vs. Backward Writing). The dysphonetic children reverted to a strong left hemisphere superiority when recalling the dichotic digits orally. Backward writing produced no ear advantage in either direction. The findings suggest that dysphonetic dyslexia may be related to (1) left hemisphere processing demands that exceed capacity, (2) easily activated right hemisphere processing strategies and (3) failure to coordinate linguistic processing interhemispherically. The results supported a novel hybrid conceptualization of dyslexia consisting of a synthesis of selective activation, and dual processor-limited capacity, theories.  相似文献   

2.
Both cerebral hemispheres contain phonological, orthographic and semantic representations of words, however there are between-hemisphere differences in the relative engagement and specialization of the different representations. Taking orthographic processing for example, previous studies suggest that orthographic neighbourhood size (N) has facilitatory effects in the right but not the left hemispheres. To pursue the nature of this asymmetric N effect, in particular whether there are individual differences in such specialisation, we examined N in a case of developmental dyslexia, FM. We first describe the nature of his difficulties, which are mainly severe phonological deficits. Employing the divided visual field paradigm with FM revealed a greater sensitivity in the right than in the left hemisphere to orthographic variables, with a significant inhibitory N effect in the left, but not right hemisphere. Such inhibition, to a lesser degree, was found among a group of adults with dyslexia but not among age-matched normal readers. We argue that enhanced sensitivity to orthographic cues is developed in some cases of dyslexia when a normal, phonology-based left hemisphere word recognition processing is not achieved. The interpretation presented here is cast in terms of differences between people with dyslexia and typical readers that originate in the atypical way in which orthographic representations are initially set up.  相似文献   

3.
The research investigated whether there are hemispheric differences in processing for words acquired early in childhood (early AoA) and words acquired later in childhood (late AoA). We hypothesized that because of recent evidence suggesting that there is a right hemisphere dominance in early childhood, early AoA words would be represented in the right hemisphere, and late AoA words would be represented in the left hemisphere. This hypothesis differs from an early view that late AoA words would be represented in the left hemisphere, and early AoA words would be represented in both hemispheres (Gazzaniga, 1974). We report two experiments using the divided visual field (DVF) technique. The results showed that there was a right visual field (RVF)/left hemisphere (LH) advantage only for late AoA words. For early AoA words, there was a left visual field (LVF)/right hemisphere advantage (RH). Implications for theories of hemispheric differences in word processing are discussed.  相似文献   

4.
It is commonly accepted that phonology is the exclusive domain of the left hemisphere. However, this pattern of lateralization, which posits a right visual field advantage, has been questioned by several studies. In fact, certain factors such as characteristics of the stimuli and subjects' handedness can modulate the right visual field advantage. Thus, the goal of this study was to compare the hemispheric dynamics of right-handers and left-handers during a divided visual field presentation of words that varied in terms of their phonological transparency. For non-transparent words, the left hemisphere seems more competent in both handedness groups. With regard to transparent words, the right hemisphere of both groups also appears competent. Surprisingly, left-handers achieved optimal processing with a functionally isolated left hemisphere, whereas right-handers needed the participation of both hemispheres. The pattern of performance cannot be fully explained by either the callosal or the direct access model.  相似文献   

5.
Adults with phonological dyslexia and controls performed a lexical decision task while ERPs were recorded in the occipitotemporal pathway. Based on N170 durations, two subgroups were formed: dysl1 showing longer N170 durations and dysl2 showing normal N170 durations. While the dysl1 subgroup had poorer accuracy for infrequent words and pseudo-words, the dysl2 group responded more slowly than controls to pseudo-words. N170 amplitudes were larger in the left hemisphere for controls irrespective of items. In the dysl1 subgroup, N170 amplitudes were larger in the left hemisphere than the right for words but not for pseudo-words, a sign of hemispheric compensation, while in the dysl2 subgroup signs of bilateralization were observed. Moreover, in the dysl1 subgroup, P100 amplitudes were smaller than controls. These results indicate different behavioral profiles of dyslexics with different patterns of P100 and N170 components. The ERP changes may be due to different behavioral strategies employed by each subgroup, logographic in dysl2 and phonological in dysl1.  相似文献   

6.
In Experiment 1 uncued recognition of single letters presented in left or right visual fields showed no hemispheric asymmetry, but cuing by alternatives produced a left-hemisphere advantage. Uncued recognition of words was better in the right visual field (left hemisphere), and this advantage was unchanged by cuing by alternatives or cuing by class. In Experiment 2 a mixed series of words, digits, and dots was presented. Uncued trials showed no asymmetry, but when a precue indicated which type or stimulus would appear next, a left-hemisphere advantage for words was evident. Cuing also produced a nonsignificant shift toward a left-hemisphere advantage for digits and a right-hemisphere advantage for dots. The asymmetrical effects of cuing can be explained by Kinsbourne's attentional model of lateralization, which suggests that cuing may selectively activate one hemisphere, and so bias attention toward the contralateral visual field. Repetition effects within and between visual fields were analyzed but no asymmetries were found.  相似文献   

7.
Three experiments were carried out to study hemispheric specialization for subitizing (the rapid enumeration of small patterns) and counting (the serial quantification process based on some formal principles). The experiments consist of numerosity identification of dot patterns presented in one visual field, with a tachistoscopic technique, or eye movements monitored through glasses, and comparison between centrally presented dot patterns and lateralized tachistoscopically presented digits. Our experiments show left visual field advantage in the identification and comparison tasks in the subitizing range, whereas right visual field advantage has been found in the comparison task for the counting range. Received: 11 January 1999 / Accepted: 17 March 2000  相似文献   

8.
In order to investigate the hypothesis that dyslexia may result from a failure of intrahemispheric integration between auditory-verbal and visual-verbal processing, a dichotic listening task and a parallel divided visual field task were administered to a group of dyslexic boys between the ages of 8 and 11 years, and a group of normal control subjects individually matched for age and WISC intelligence. The dyslexics were on average over two years retarded in reading and spelling. Dyslexics exhibited a normal right ear advantage on dichotic listening for digits although lesser right ear advantage was related to reading retardation. In the divided visual field task, the normal controls showed a left visual field advantage for digits which it is argued resulted from a failure in fixation linked to reading habits. Within the dyslexic group greater reading deficiency was associated with relative bilateralization for visual verbal processing. The results therefore support the hypothesis.  相似文献   

9.
The right-hemisphere hypothesis of deep dyslexia has received support from functional imaging studies of acquired deep dyslexia following damage to the left cerebral hemisphere, but no imaging studies of cases of developmental deep dyslexia, in which brain damage is not suspected, have been reported. In this paper, we report the first evidence of right hyperactivation in an adult case of developmental deep dyslexia. Hyperactivation was observed in the right inferior frontal cortex during functional magnetic resonance imaging (fMRI) of the oral reading of imageable content words and nonwords to which imageable lexical responses were frequently made. No evidence of right hyperactivation was observed in the oral reading of function words, nor during the naming of imageable words in response to pictured objects. The results reveal strategic and selective use of right-hemisphere functions for particular types of written stimuli. We propose that children with developmental deep dyslexia compensate for their lack of phonological skills by accessing right-hemisphere imageable associations that provide a mnemonic for linking written forms to spoken names.  相似文献   

10.
The right-hemisphere hypothesis of deep dyslexia has received support from functional imaging studies of acquired deep dyslexia following damage to the left cerebral hemisphere, but no imaging studies of cases of developmental deep dyslexia, in which brain damage is not suspected, have been reported. In this paper, we report the first evidence of right hyperactivation in an adult case of developmental deep dyslexia. Hyperactivation was observed in the right inferior frontal cortex during functional magnetic resonance imaging (fMRI) of the oral reading of imageable content words and nonwords to which imageable lexical responses were frequently made. No evidence of right hyperactivation was observed in the oral reading of function words, nor during the naming of imageable words in response to pictured objects. The results reveal strategic and selective use of right-hemisphere functions for particular types of written stimuli. We propose that children with developmental deep dyslexia compensate for their lack of phonological skills by accessing right-hemisphere imageable associations that provide a mnemonic for linking written forms to spoken names.  相似文献   

11.
The right cerebral hemisphere has long been argued to lack phonological processing capacity. Recently, however, a sex difference in the cortical representation of phonology has been proposed, suggesting discrete left hemisphere lateralization in males and more distributed, bilateral representation of function in females. To evaluate this hypothesis and shed light on sex differences in the phonological processing capabilities of the left and right hemispheres, we conducted two experiments. Experiment 1 assessed phonological activation implicitly (masked homophone priming), testing 52 (M=25, F=27; mean age 19.23years, SD 1.64years) strongly right-handed participants. Experiment 2 subsequently assessed the explicit recruitment of phonology (rhyme judgement), testing 50 (M=25, F=25; mean age 19.67years, SD 2.05years) strongly right-handed participants. In both experiments the orthographic overlap between stimulus pairs was strictly controlled using DICE [Brew, C., & McKelvie, D. (1996). Word-pair extraction for lexicography. In K. Oflazer & H. Somers (Eds.), Proceedings of the second international conference on new methods in language processing (pp. 45-55). Ankara: VCH], such that pairs shared (a) high orthographic and phonological similarity (e.g., not-KNOT); (b) high orthographic and low phonological similarity (e.g., pint-HINT); (c) low orthographic and high phonological similarity (e.g., use-EWES); or (d) low orthographic and low phonological similarity (e.g., kind-DONE). As anticipated, high orthographic similarity facilitated both left and right hemisphere performance, whereas the left hemisphere showed greater facility when phonological similarity was high. This difference in hemispheric processing of phonological representations was especially pronounced in males, whereas female performance was far less sensitive to visual field of presentation across both implicit and explicit phonological tasks. As such, the findings offer behavioural evidence indicating that though both hemispheres are capable of orthographic analysis, phonological processing is discretely lateralised to the left hemisphere in males, but available in both the left and right hemisphere in females.  相似文献   

12.
Three hemifield tachistoscopic studies of a right-handed patient with acquired Broca's aphasia and deep dyslexia, but with intact visual fields, are presented to support the hypothesis of right hemisphere (RH) participation in deep dyslexic reading. A systematic comparison of this deep dyslexic with the disconnected RHs of two patients with complete cerebral commissurotomy disclosed a similar, but not identical, pattern of abilities. The results demonstrate partial reliance on the RH for accessing the meaning of single words, but not for phonological encoding in this patient.  相似文献   

13.
Previous studies indicate that the benefits of dividing an information processing load across both cerebral hemispheres outweigh the costs of interhemispheric transfer as tasks become more difficult or cognitively complex. This is demonstrated as better performance when two stimuli to be compared are presented one to each visual field and hemisphere than when both stimuli are presented to the same single hemisphere (an across-hemisphere advantage). Two experiments indicate that this finding does not generalize to complex tasks that require matching numeric quantities represented by two very different visual formats whose processing involves somewhat different cortical areas: digits and dice-like dot patterns. In fact, mixing these stimulus formats consistently produces a within-hemisphere advantage. We propose that, when two simultaneously presented stimuli are presented in sufficiently different visual formats, identification of the two stimuli may take place in parallel, via different cortical access routes and with little or no interference, even when they are presented to the same cerebral hemisphere.  相似文献   

14.
1IntroductionCorrectly identifying other people′s facial ex-pressions of emotions is important to human socialinteraction in all societies.Many studies suggestthat the identification of facial expressions in par-ticular and perceptual processing of emotional infor-mation is carried out mainly by the right hemi-sphere of the brain[1 ̄7].Damage to the righthemisphere generally produces more significant im-pairment in recognition of all facial expressions ofemotion than damage to the left hemisp…  相似文献   

15.
Twenty-three Spanish-English bilinguals were tachistoscopically presented with four-letter common nouns. They viewed 20 word pairs, first in their native language, then in the other, for 40 msec under simultaneous bilateral exposure. This paradigm has previously shown a strong right visual field and therefore left hemisphere superiority for words in a single language. The results show a word identification advantage in the right visual field. This indicates a left hemisphere advantage for processing of both languages, regardless of which was learned first. There are nevertheless wide individual differences in the number of bilinguals showing the expected asymmetry, as compared with monolinguals. There may be a trend, therefore, for less unilaterality of language function in bilinguals, although both languages are seen as being equally lateralized.  相似文献   

16.
Currently little is known about how implicit processes (i.e., cognitive processes that consumers are unaware of) are utilized as consumers read metaphoric advertisements. The field of cognitive neuroscience can help marketers better understand consumers' implicit processing by examining how each cerebral hemisphere uniquely contributes during metaphoric advertisement comprehension. A right hemisphere advantage has been demonstrated during metaphoric language processing; however, it is unclear how each hemisphere of the brain processes metaphors used in advertisements. This study combines the fields of marketing and cognitive neuroscience to investigate the hemispheric processing of metaphoric advertisements. Through the use of the divided visual field paradigm, participants read metaphor, literal, or neutral slogans and responded to related target words presented to either the left visual field‐right hemisphere or the right visual field‐left hemisphere. As predicted, there was a right hemisphere advantage, compared to the left hemisphere, for metaphoric slogans. Additionally, greater facilitation was evident in the right hemisphere for literal slogans compared to metaphoric slogans. Metaphoric messages were also remembered better than literal ones. These findings provide an in‐depth account of how consumers implicitly process messages, suggesting an important role of the right hemisphere during the comprehension of both metaphoric and literal messages. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Four reading-related, information-processing tasks were administered to right-handed blind readers of braille who differed in level of reading skill and in preference for using the right hand or the left hand when required to read text with just one hand. The tasks were letter identification, same-different matching of letters that differed in tactual similarity, short-term memory for lists of words that varied in tactual and phonological similarity, and paragraph reading with and without a concurrent memory load of digits. The results showed interactions between hand preference and the hand that was actually used to read the stimulus materials, such that left preferrers were significantly faster and more accurate with their left hands than with their right hands whereas right preferrers were slightly but usually not significantly faster with their right hands than with their left hands. In all cases, the absolute magnitude of the left-hand advantage among left preferrers was substantially larger than the right-hand advantage among right preferrers. The results suggest that encoding strategies for dealing with braille are reflected in hand preference and that such strategies operate to modify an underlying but somewhat plastic superiority of the right hemisphere for dealing with the perceptual requirements of tactual reading. These requirements are not the same as those of visual reading, leading to some differences in patterns of hemispheric specialization between readers of braille and readers of print.  相似文献   

18.
阅读障碍语音缺陷是阅读障碍的关键原因之一。脑科学研究发现,拼音文字系统中阅读障碍者在语音加工的神经机制上存在缺陷,相关脑区包括颞—顶—枕联合区和额下回;而汉语阅读障碍者语音加工时,激活的脑区和拼音文字系统阅读障碍者激活的脑区不同,涉及左额中回和右脑一些皮层。基于此,提出了相应的阅读教学建议。  相似文献   

19.
This research investigates the hemispheric processing of anaphors when readers activate multiple antecedents. Participants read texts promoting an anaphoric inference and performed a lexical decision task to inference-related target words that were consistent (Experiment 1) or inconsistent (Experiment 2) with the text. These targets were preceded by constrained or less constraining text and were presented to participants' right visual field-left hemisphere or to their left visual field-right hemisphere. In Experiment 1, both hemispheres showed facilitation for consistent antecedents and the right hemisphere showed an advantage over the left hemisphere in processing antecedents when preceded by less constrained text. In Experiment 2, the left hemisphere only showed negative facilitation for inconsistent antecedents. When readers comprehend text with multiple antecedents: both hemispheres process consistent information, the left hemisphere inhibits inconsistent information, and the right hemisphere processes less constrained information.  相似文献   

20.
Aphasic patients with reading impairments frequently substitute incorrect real words for target words when reading aloud. Many of these word substitutions have substantial orthographic overlap with their targets and are classified as "visual errors" (i.e., sharing 50% of targets' letters in the same relative position). Fifteen chronic aphasic patients read a battery of words and non-words; non-word reading was poor for all patients, and more than 50% of errors on words involved the substitution of a non-target word. An investigation of the factors conditioning these word substitutions, as well as the production of visual errors, identified a number of similarities to patterns previously reported for patients with right neglect dyslexia, which has been said to occur relatively rarely. These included a strong tendency for errors to overlap targets in initial letter positions, maintenance of target length in errors, and the substitution of words higher in imageability than targets. It is proposed that left hemisphere damage frequently leads to disruption of a level of representation for written words in which letter position is ordinally coded, resulting in exacerbation of a normal processing advantage for early letter positions. A computational model is discussed that incorporates this level of representation and successfully simulates relevant normal and patient data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号