首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Effects of information specifying the position of an object in a 3-D scene were investigated in two experiments with twelve observers. To separate the effects of the change in scene position from the changes in the projection that occur with increased distance from the observer, the same projections were produced by simulating (a) a constant object at different scene positions and (b) different objects at the same scene position. The simulated scene consisted of a ground plane, a ceiling plane, and a cylinder on a pole attached to both planes. Motion-parallax scenes were studied in one experiment; texture-gradient scenes were studied in the other. Observers adjusted a line to match the perceived internal depth of the cylinder. Judged depth for objects matched in simulated size decreased as simulated distance from the observer increased. Judged depth decreased at a faster rate for the same projections shown at a constant scene position. Adding object-centered depth information (object rotation) increased judged depth for the motion-parallax displays. These results demonstrate that the judged internal depth of an object is reduced by the change in projection that occurs with increased distance, but this effect is diminished if information for change in scene position accompanies the change in projection.  相似文献   

2.
On the basis of the hypothesis of misapplied constancy scaling, the perception of an abstract horizontal-vertical illusion figure embedded in photographs of natural scenes with depth cues is investigated. The effect is compared with that of a figure on photographs containing no depth information and with a figure on a neutral surface. It is shown that the magnitude of the illusion in the perspective scenes is greater than in the other two conditions. The results are considered compatible with a constancy theory of the illusion. Finally, the evidence for misapplied constancy scaling in the horizontal-vertical illusion in relation to a retinal theory is discussed.  相似文献   

3.
In the current study, the authors investigated whether the ground dominance effect (the use of ground surface information for the perceptual organization of scenes) varied with age. In Experiment 1, a scene containing a ground, a ceiling, and 2 vertical posts was presented. The scene was either in its normal orientation or rotated to the side. In Experiment 2, a blue dot was attached to each post, with location varied from bottom to top of the posts. In Experiment 3, a scene similar to that in Experiment 1 was presented in different locations in visual field. Observers judged which of the 2 objects (posts in Experiments 1 and 3, blue dots in Experiment 2) appeared to be closer. The results indicated that both younger (mean age = 22 years) and older observers (mean age = 73 years) responded consistently with the ground dominance effect. However, the magnitude of the effect decreased for older observers. These results suggest a decreased use of ground surface information by older observers for the perceptual organization of scene layout.  相似文献   

4.
The effect of varying information for overall depth in a simulated 3-D scene on the perceived layout of objects in the scene was investigated in two experiments. Subjects were presented with displays simulating textured surfaces receded in depth. Pairs of markers were positioned at equal intervals within the scenes. The subject's task was to judge the depth between the intervals. Overall scene depth was varied by viewing through either a collimating lens or a glass disk. Judged depth for equal depth intervals decreased with increasing distance of the interval from the front of the scene. Judged depth was greater for collimated than for non-collimated viewing. Interestingly, collimated viewing resulted in a uniform rescaling of the perceived depth intervals.  相似文献   

5.
The perception of depth and slant in three-dimensional scenes specified by texture was investigated in five experiments. Subjects were presented with computer-generated scenes of a ground and ceiling plane receding in depth. Compression, convergence, and grid textures were examined. The effect of the presence or absence of a gap in the center of the display was also assessed. Under some conditions perceived slant and depth from compression were greater than those found with convergence. The relative effectiveness of compression in specifying surface slant was greater for surfaces closer to ground planes (80 degrees slant) than for surfaces closer to frontal parallel planes (40 degrees slant). The usefulness of compression was also observed with single-plane displays and with displays with surfaces oriented to reduce information regarding the horizon.  相似文献   

6.
The ability of younger and older observers to perceive 3-D shape and depth from motion parallax was investigated. In Experiment 1, the observers discriminated among differently curved 3-dimensional (3-D) surfaces in the presence of noise. In Experiment 2, the surfaces' shape was held constant and the amount of front-to-back depth was varied; the observers estimated the amount of depth they perceived. The effects of age were strongly task dependent. The younger observers' performance in Experiment 1 was almost 60% higher than that of the older observers. In contrast, no age effect was obtained in Experiment 2. Older observers can effectively perceive variations in depth from patterns of motion parallax, but their ability to discriminate 3-D shape is significantly compromised.  相似文献   

7.
Image movement provides one of the most potent two-dimensional cues for depth. From motion cues alone, the brain is capable of deriving a three-dimensional representation of distant objects. For many decades, theoretical and empirical investigations into this ability have interpreted these percepts as faithful copies of the projected 3-D structures. Here we review empirical findings showing that perceived 3-D shape from motion is not veridical and cannot be accounted for by the current models. We present a probabilistic model based on a local analysis of optic flow. Although such a model does not guarantee a correct reconstruction of 3-D shape, it is shown to be consistent with human performance.  相似文献   

8.
Despite the complexity and diversity of natural scenes, humans are very fast and accurate at identifying basic-level scene categories. In this paper we develop a new technique (based on Bubbles, Gosselin & Schyns, 2001a; Schyns, Bonnar, & Gosselin, 2002) to determine some of the information requirements of basic-level scene categorizations. Using 2400 scenes from an established scene database (Oliva & Torralba, 2001), the algorithm randomly samples the Fourier coefficients of the phase spectrum. Sampled Fourier coefficients retain their original phase while the phase of nonsampled coefficients is replaced with that of white noise. Observers categorized the stimuli into 8 basic-level categories. The location of the sampled Fourier coefficients leading to correct categorizations was recorded per trial. Statistical analyses revealed the major scales and orientations of the phase spectrum that observers used to distinguish scene categories.  相似文献   

9.
We examined the ability of human observers to discriminate between different 3-D quadratic surfaces defined by motion, and with head position fed back to the stimulus to provide an up-to-date dynamical perspective view. We tested whether 3-D shape or 3-D curvature would affect discrimination performance. It appeared that discrimination of 3-D quadratic shape clearly depended on shape but not on the amount of curvature. Even when the amount of curvature was randomized, subjects’ performance was not altered. On the other hand, the discrimination of 3-D curvature clearly depended linearly on curvature with Weber fractions of 20% on the average and, to a small degree, on 3-D shape. The experiment shows that observers can easily separate 3-D shape and 3-D curvature, and that Koenderink’s shape index and curvedness provide a convenient way to specify shape. These results warn us against using just any arbitrary 3-D shape in 3-D shape perception tasks and indicate, for example, that emphasizing 3-D shape in computer displays by exaggerating curvature does not have any effect.  相似文献   

10.
In contextual cueing, the position of a target within a group of distractors is learned over repeated exposure to a display with reference to a few nearby items rather than to the global pattern created by the elements. The authors contrasted the role of global and local contexts for contextual cueing in naturalistic scenes. Experiment 1 showed that learned target positions transfer when local information is altered but not when global information is changed. Experiment 2 showed that scene-target covariation is learned more slowly when local, but not global, information is repeated across trials than when global but not local information is repeated. Thus, in naturalistic scenes, observers are biased to associate target locations with global contexts.  相似文献   

11.
In a series of four experiments, we evaluated observers' abilities to perceive and discriminate ordinal depth relationships between separated local surface regions for objects depicted by static, deforming, and disparate boundary contours or silhouettes. Comparisons were also made between judgments made for silhouettes and for objects defined by surface texture, which permits judgment based on conventional static texture gradients, conventional stereopsis, and conventional structure-from-motion. In all the experiments, the observers were able to detect, with relatively high precision, ordinal depth relationships, an aspect of local three-dimensional (3-D) structure, from boundary contours or silhouettes. The results of the experiments clearly demonstrate that the static, disparate, and deforming boundary contours of solid objects are perceptually important optical sources of information about 3-D shape. Other factors that were found to affect performance were the amount of separation between the local surface regions, the proximity or closeness of the regions to the boundary contour itself, and for the conditions with deforming contours, the overall magnitude of the boundary deformation.  相似文献   

12.
Norman JF  Dawson TE  Butler AK 《Perception》2000,29(11):1335-1359
The ability of younger and older adults to perceive the 3-D shape, depth, and curvature of smooth surfaces defined by differential motion and binocular disparity was evaluated in six experiments. The number of points defining the surfaces and their spatial and temporal correspondences were manipulated. For stereoscopic sinusoidal surfaces, the spatial frequency of the corrugations was also varied. For surfaces defined by motion, the lifetimes of the individual points in the patterns were varied, and comparisons were made between the perception of surfaces defined by points and that of more ecologically valid textured surfaces. In all experiments, the older observers were less sensitive to the depths and curvatures of the surfaces, although the deficits were much larger for motion-defined surfaces. The results demonstrate that older adults can extract depth and shape from optical patterns containing only differential motion or binocular disparity, but these abilities are often manifested at reduced levels of performance.  相似文献   

13.
In order to study infants' sensitivity to binocular information for depth, 11 infants, 20 to 26 weeks of age, were presented with real and stereoscopically projected virtual objects at three distances, and the infants' reaching behavior was videotaped. When the virtual object was positioned out of reach, infants tended to lean further forward and to reach less frequently than when the virtual object was positioned within reach. In addition, the proportion of reaches in which the infants patted, closed their hands, or brought their hands together was greater when the virtual object was within reach. However, no difference in the terminal location of the infants' reaches was found as a function of the virtual object's position. Examination of reaches to a near real object revealed that infants frequently did not contact the object or show appropriate hand shape or orientation. The effectiveness of the cue of retinal size and of binocular information for the depth of an object is discussed. It is concluded that 5-month-old infants are sensitive to binocular information for depth.  相似文献   

14.
Love, Rouder, and Wisniewski (1999) obtained interesting results showing that, in a same/different task on abstract visual scenes, subjects were able to process global properties quickly, even before local properties were identified. Our aim in this work is to explore more fully the complex relationships that exist between local processing and global processing. In our first experiment, we tested the robustness and generality of these global and local effects by using another, very different kind of local element. We showed that the global effects remain strong even when the local elements are neither conventional nor easily discriminable. In the second experiment, we showed that there exists an intermediate level of similarity between purely local and purely global similarity. Furthermore, we found that even when a stronger form of local dissimilarity is manipulated (through the introduction of different local elements), global effects were still observed. We conclude with a discussion of the respective roles of global and local properties in light of our findings.  相似文献   

15.
Recent research suggests that there is an advantage for processing configural information in scenes and objects. The purpose of this study was to investigate the extent to which attention may account for this configural advantage. In Experiment 1, we found that cueing the location of change in single object displays improved detection performance for both configural and shape changes, yet cueing attention away from the location of change was detrimental only for shape change detection. A configural advantage was present for each cueing condition. Experiments 2A and 2B examined whether the configural advantage persisted in conditions where attention was distributed more widely, using a visual search paradigm. Although searches for configural changes were faster than those for shape changes across all set sizes, both types of information appeared to be processed with similar efficiency. Overall, these results suggest that the configural advantage is independent of the location or distribution of visual attention.  相似文献   

16.
Previously, we (Bian, Braunstein, and& Andersen, 2005) reported a dominance effect of the ground plane over other environmental surfaces in determining the perceived relative distance of objects in 3-D scenes. In the present study, we conducted three experiments to investigate whether this ground dominance is due to inherent differences between ground and ceiling surfaces, or to the locations of these surfaces in the visual field. In Experiment 1, two vertical posts were positioned between a ground surface and a ceiling surface, and optical contact was manipulated so that the two surfaces provided contradictory information about the relative distances of the posts from the participant. The two surfaces were either both above, both below, or one above and one below fixation. In Experiment 2, only one surface was presented, either above, below, or at fixation. In Experiment 3, the posts were replaced by two red dots, and the eccentricity of the optical contact on the two surfaces was equated in each of five locations in the visual field. In all three experiments, participants judged which of the two objects appeared to be closer. Overall, we found a higher proportion of judgments consistent with a ground surface than with a ceiling surface in all locations, indicating that the ground dominance effect is mainly due to characteristics of the ground surface, with location in the visual field having only a minor effect.  相似文献   

17.
Three experiments were conducted to examine the accuracy of 3-D shape recovery from deforming-contour displays. The displays simulated silhouettes of ellipsoids rotating about a vertical axis. Subjects judged the horizontal cross-section of the ellipsoids. The shape of the ellipsoid, the position of the axis of rotation, and the type of projection were manipulated in Experiment 1. The results indicated relatively accurate shape recovery when the major axis of the ellipsoid was small. In Experiment 2, the shape of the ellipsoid and the velocity and curvature of the contour were manipulated. When the rate of deformation of curvature was decreased, more eccentric shapes were reported. In Experiment 3, the shape of the object and the amount of simulated rotation were manipulated. Subjects made both shape and extent of rotation judgments. The results showed that eccentricity of shape responses could be accurately predicted from rotation responses, suggesting that the recovery of 3-D shape from smooth, deforming contours is dependent on the perceived extent of rotation.  相似文献   

18.
What is the nature of the representation formed during the viewing of natural scenes? We tested two competing hypotheses regarding the accumulation of visual information during scene viewing. The first holds that coherent visual representations disintegrate as soon as attention is withdrawn from an object and thus that the visual representation of a scene is exceedingly impoverished. The second holds that visual representations do not necessarily decay upon the withdrawal of attention, but instead can be accumulated in memory from previously attended regions. Target objects in line drawings of natural scenes were changed during a saccadic eye movement away from those objects. Three findings support the second hypothesis. First, changes to the visual form of target objects (token substitution) were successfully detected, as indicated by both explicit and implicit measures, even though the target object was not attended when the change occurred. Second, these detections were often delayed until well after the change. Third, changes to semantically inconsistent target objects were detected better than changes to semantically consistent objects.  相似文献   

19.
Many theoretical analyses of 3-dimensional form perception assume that visible surfaces in the environment are perceptually represented in terms of local mappings of metric depth and/or orientation. Although this approach is often taken for granted in the study of human vision, there have been relatively few attempts to demonstrate its psychological validity empirically. In an effort to shed new light on this issue, our research has been designed to investigate the accuracy with which observers can discriminate metric depth and orientation intervals on smoothly curved surfaces. Observers were presented with visual images of surfaces defined by shading and/or texture, on which two pairs of points were designated with small dots. In Experiment 1, their task was to identify which pair of points had a greater difference in depth; in Experiment 2 they were required to judge which pair had a greater difference in orientation. The Weber fractions obtained for these tasks were 10 to 100 times greater than those that have been reported for other types of sensory discrimination, indicating that the perception of metric structure from these displays is surprisingly coarse grained.  相似文献   

20.
A variety of perceptual correspondences between auditory and visual features have been reported, but few studies have investigated how rhythm, an auditory feature defined purely by dynamics relevant to speech and music, interacts with visual features. Here, we demonstrate a novel crossmodal association between auditory rhythm and visual clutter. Participants were shown a variety of visual scenes from diverse categories and asked to report the auditory rhythm that perceptually matched each scene by adjusting the rate of amplitude modulation (AM) of a sound. Participants matched each scene to a specific AM rate with surprising consistency. A spatial-frequency analysis showed that scenes with greater contrast energy in midrange spatial frequencies were matched to faster AM rates. Bandpass-filtering the scenes indicated that greater contrast energy in this spatial-frequency range was associated with an abundance of object boundaries and contours, suggesting that participants matched more cluttered scenes to faster AM rates. Consistent with this hypothesis, AM-rate matches were strongly correlated with perceived clutter. Additional results indicated that both AM-rate matches and perceived clutter depend on object-based (cycles per object) rather than retinal (cycles per degree of visual angle) spatial frequency. Taken together, these results suggest a systematic crossmodal association between auditory rhythm, representing density in the temporal domain, and visual clutter, representing object-based density in the spatial domain. This association may allow for the use of auditory rhythm to influence how visual clutter is perceived and attended.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号