首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Computerized treadmill gait analysis in models of toxicant exposure and neurodegenerative disorders holds much potential for detection and therapeutic intervention in these models, and researchers must validate the technology that assists in that data collection and analysis. The present authors used a commercially available computerized gait analysis system that used (a) a motorized treadmill on retired breeder male C57BL/6J mice, (b) the toxicant-induced (1-methyl-1-, 2-, 3-, 6-tetrahydropyridine) MPTP mouse model of Parkinson's disease (PD), and (c) the superoxide dismutase 1 (SOD1) G93A transgenic mouse model of amyotrophic lateral sclerosis (ALS). The authors compared the detection of deficits by computerized treadmill gait analysis in MPTP-treated mice with inked-paw stride length and correlated these measures to dopamine (DA) loss. The authors found that the computerized treadmill gait analysis system did not distinguish MPTP-treated mice from vehicle controls, despite a nearly 90% deficit of striatal DA. In contrast, decreases in inked-paw stride length correlated strongly with DA losses in these same animals. Computerized treadmill gait analysis could neither reliably distinguish SOD1 G93A mutant mice from controls from 6 to 12 weeks of age nor detect any consistent early motor deficits in these mice. On the basis of the authors' findings, they inferred that computerized gait analysis on a motorized treadmill is not suited to measuring motor deficits in either the MPTP mouse model of PD or the SOD1 G93A mouse model of ALS.  相似文献   

2.
To evaluate how fundamental gait parameters used in walking (stride length, frequency, speed) are selected by cats we compared stride characteristics selected when walking on a solid surface to those selected when they were constrained to specific stride lengths using a pedestal walkway. Humans spontaneously select substantially different stride length–stride frequency–speed relationships in walking when each of these parameters is constrained, as in walking to a metronome beat (frequency constrained), evenly spaced floor markers (stride length constrained) or on a treadmill (speed constrained). In humans such adjustments largely provide energetic economy under the prescribed walking conditions. Cats show a similar shift in gait parameter selection between conditions as observed in humans. This suggests that cats (and by extension, quadrupedal mammals) also select gait parameters to optimize walking cost-effectiveness. Cats with a profound peripheral sensory deficit (from pyridoxine overdose) appeared to parallel the optimization seen in healthy cats, but without the same level of precision. Recent studies in humans suggest that gait optimization may proceed in two stages – a fast perception-based stage that provides the initial gait selection strategy which is then fine-tuned by feedback. The sensory deficit cats appeared unable to accomplish the feedback-dependent aspect of this process.  相似文献   

3.
The taiep (tremor, ataxia, immobility, epilepsy, and paralysis) myelin mutant displays a number of locomotor deficits. Taiep rat gait is characterized by shorter stride and step lengths as well as by larger stride widths. Thirty-day-old taiep mutants were placed under a regimen of daily hormone injections for 60 days. Animals in Condition 1 received melatonin, those in Condition 2 received pregnenolone sulfate, and those in a third control condition received injections of saline. Following the injections, each taiep mutant's gait was analyzed. The animals that received melatonin and pregnenolone displayed significantly larger stride and step lengths than did the controls. In addition, the animals that received hormones displayed shorter stride widths than did the controls. These experimental effects are consistent with a normalization of gait. Possible cellular mechanisms of this behavioral effect are discussed.  相似文献   

4.
The authors examined whether there were gender differences in the variability of basic gait parameters (stride length, stride time) and 3-dimensional (3D) rotations of the hip, knee, and ankle joints during treadmill locomotion of 18 men and 15 women at 4 different gait speeds (walking at 5 km/hr, running at 8, 10, and 12 km/hr). The authors used 2-way analyses of variance to assess the data. No gender differences in the mean values or variability of basic gait parameters were detected. However, the women exhibited lower variability than did the men for 6 individual joint rotations: (a) transverse plane rotations of the ankle joint at 8, 10, and 12 km/hr, (b) transverse plane rotations of the hip and knee joints at 12 km/hr, and (c) sagittal plane rotations of the ankle joint at 12 km/hr. When collapsed across all 3D lower extremity rotations, the data showed that the women had lower variability than did the men at 12 km/hr. Reduced variability may result in more localized mechanical stress on anatomical structures and could therefore be a risk factor for injury in women at high gait speeds. The results also suggested that gender differences in variability may not be consistent across different levels of the motor system.  相似文献   

5.
BackgroundGait impairment is a major motor symptom in Parkinson’s disease (PD), and treadmill training is an effective non-pharmacological treatment option.Research questionIn this study, the time course, sustainability and transferability of gait adaptations to treadmill training with and without additional postural perturbations were investigated.Methods38 PD patients (Hoehn & Yahr 1–3.5) were randomly allocated to eight weeks of treadmill training, performed twice-weekly for 40 min either with (perturbation treadmill training [PTT], n = 18) or without (conventional treadmill training [CTT], n = 20) additional perturbations to the treadmill surface. Spatiotemporal gait parameters were assessed during treadmill walking on a weekly basis (T0–T8), and after three months follow-up (T9). Additional overground gait analyses were performed at T0 and T8 to investigate transfer effects.ResultsTreadmill gait variability reduced linearly over the course of 8 weeks in both groups (p < .001; Cohen’s d (range): −0.53 to −0.84). Only the PTT group significantly improved in other gait parameters (stride length/time, stance-/swing time), with stride time showing a significant between-group interaction effect (Cohen’s d = 0.33; p = .05). Additional between-group interactions indicated more sustained improvements in stance (Cohen’s d = 0.85; p = .02) and swing time variability in the PTT group (Cohen’s d = 0.82; p = .03) at T9. Overground gait improvements at T8 existed only in stance (d = -0.73; p = .04) and swing time (d = 0.73; p = .04).DiscussionTreadmill stride-to-stride variability reduced substantially and linearly, but transfer to overground walking was limited. Adding postural perturbations tended to increase efficacy and sustainability of several gait parameters. However, since between-group effects were small, more work is necessary to support these findings.  相似文献   

6.
The taiep (tremor, ataxia, immobility, epilepsy, and paralysis) myelin mutant displays a number of locomotor deficits. Taiep rat gait is characterized by shorter stride and step lengths as well as by larger stride widths. Thirty-day-old taiep mutants were placed under a regimen of daily hormone injections for 60 days. Animals in Condition 1 received melatonin, those in Condition 2 received pregnenolone sulfate, and those in a third control condition received injections of saline. Following the injections, each taiep mutant's gait was analyzed. The animals that received melatonin and pregnenolone displayed significantly larger stride and step lengths than did the controls. In addition, the animals that received hormones displayed shorter stride widths than did the controls. These experimental effects are consistent with a normalization of gait. Possible cellular mechanisms of this behavioral effect are discussed.  相似文献   

7.
Asymmetric gait is a hallmark of many neurological and musculoskeletal conditions. This behavior is often the result of a decrease in the stability of interlimb coordination, and synchronization to external signals such as auditory cuing or another walking individual may be helpful for altering abnormal movement patterns. The purpose of this study was to investigate the interaction between interlimb coordination and unintentional, interpersonal synchronization of gait in healthy individuals in response to unilateral ankle loading. Fifty participants completed four trials while walking on a motorized treadmill: (1) by themselves, (2) with a partner on an adjacent treadmill, (3) by themselves with additional weight applied unilaterally to their right ankle, and (4) with both a partner and unilateral weight. As expected, the addition of unilateral weight increased asymmetry according to several spatiotemporal measures of gait, but the presence of a partner on an adjacent treadmill significantly reduced this effect. Further, the amount of unintentional, interpersonal synchronization among pairings was relatively unaffected by the addition of ankle weight to one of the partners. All pairings realized a beneficial effect on asymmetrical gait but this effect was greater for pairings that consistently synchronized unintentionally. These results suggest that side by side walking might be an effective approach for influencing bilateral coordination of gait and may hold insight for understanding gait asymmetry and interlimb movement variability.  相似文献   

8.
To determine the effects of speed on gait previous studies have examined young adults walking at different speeds; however, the small number of strides may have influenced the results. The aim of this study was to investigate the immediate and long-term impact of continuous slow walking on the mean, variability and structure of stride-to-stride measures. Fourteen young adults walked at a constant pace on a treadmill at three speeds (preferred walking speed (PWS), 90% and 80% PWS) for 30 min each. Spatiotemporal gait parameters were computed over six successive 5-min intervals. Walking slower significantly decreased stride length, while stride period and width increased. Additionally, stride period and width variability increased. Signal regularity of stride width increased and decreased in stride period. Persistence of stride period and width increased significantly at slower speeds. While several measures changed during 30 min of walking, only stride period variability and signal regularity revealed a significant speed and time interaction. Healthy young adults walking at slower than preferred speeds demonstrated greater persistence and signal regularity of stride period while spatiotemporal changes such as increased stride width and period variability arose. These results suggest that different control processes are involved in adapting to the slower speeds.  相似文献   

9.
The authors examined the changes in bipedal gait of toddlers in the anteroposterior (AP) and mediolateral (ML) directions, as a set, at the onset of independent gait and 1 month after onset. Two groups with distinctly different dynamic resources were studied: 8 toddlers with typical development (TD) and 8 toddlers with Down syndrome (DS). Three-dimensional kinematic data were collected, and gait parameters, such as walking speed, stride length, and stride frequency, as well as the ratio of exchange between potential energy and kinetic energy of the center of mass (COM), were calculated. Displacement of the COM in the AP and ML directions were also analyzed. For some gait variables, toddlers with DS seemed to show more mature values at walking onset than their peers with TD. Those group differences reversed and increased by Visit 2. When the authors considered the motion of the COM of the system, it became clear that the qualitative differences between those groups were characterized primarily by constraints in the ML direction. The authors propose that establishment of coupling between AP and ML oscillations is a key component for the emergence of independent bipedal walking for both populations.  相似文献   

10.
Sensorimotor synchronization has been used in the rehabilitation of gait, yet much remains unknown regarding the optimal use of this technique. The purpose of this study was to test the hypothesis that adding small amounts of variability to the motion of a vertically oscillating treadmill would affect the behavior of healthy walkers. Sixteen young adults walked on a treadmill and pneumatically actuated platform for one control trial (no oscillation) and eight trials in which the walking surface oscillated in the vertical direction under different conditions of variability. During the oscillation trials, the mean frequency of oscillation was equal to the preferred step frequency of the participant, but each individual cycle period was allowed to vary within a pre-determined range from 0% (no variability) to ±25% (high variability) of the mean cycle period. The amount of variance of each cycle period within each condition was drawn randomly from a white noise generator. Synchronization was improved when a small amount of noise was added to the platform motion but synchronization significantly decreased at higher levels of noise. Coefficient of variation of stride duration was relatively unchanged at lower levels of variability, but increased significantly at higher levels of variability. Statistical persistence of stride duration was significantly reduced during all trials with vertical oscillation relative to normal walking, but was not significantly altered by variability in the treadmill oscillation. These results suggest that the addition of a small amount of random variability to the cycle period of an oscillator may enhance sensorimotor synchronization of gait to an external signal. These data may have implications for the use of synchronization in a therapeutic setting.  相似文献   

11.
Adolescents tend to exhibit more variability in their gait patterns than adults, suggesting a lack of gait maturity during this period of ongoing musculoskeletal growth and development. However, there is a lack of consensus over the age at which mature gait patterns are achieved and the factors contributing to gait maturation. Therefore, the purpose of this study was to investigate gait control and maturity in adolescents by determining if differences existed between adolescents and adults in a) the amount of spatiotemporal variability of walking and running patterns across a range of speeds, and b) how swiftly gait patterns are adapted to increasing gait speed during the walk-to-run transition. Forty-six adolescents (10–12-year-olds, n = 17; 13–14-year-olds, n = 12; and 15–17-year-olds, n = 17) and 12 young adults completed an incrementally ramped treadmill test (+0.2 km·h−1 every 30 s) to determine the preferred transition speed (PTS) during a walk-to-run transition. Age-related differences in the variability of stride lengths and stride durations were assessed across 4 speeds (self-selected walking speed, PTS − 0.06 m·s−1, PTS + 0.06 m·s−1, PTS + 0.83 m·s−1). Repeated measures ANOVAs (p < 0.05) compared coefficients of variation for these spatiotemporal parameters, while a one-way ANOVA compared the numbers of gait transitions and speed increments used to identify PTS between the adolescent groups and young adults. Compared to adults, 10–12yo exhibited more spatiotemporal variability during all gait conditions, while 13–17yo only exhibited more variability at PTS + 0.06 m·s−1. No age-dependent pattern was observed in PTS values, but 10–12yo completed more gait transitions over more speed increments than 15–17yo and adults. The development of mature gait patterns is thus a progressive process, with walking maturing at an earlier age than running. As 10-12yo were unable to swiftly adapt gait patterns to the changing task demands, their control mechanisms of gait may not have fully matured yet.  相似文献   

12.
Dual-task-related gait changes among older adults while they perform spoken verbal tasks have been reported frequently. The authors examined whether the type of walking-associated spoken verbal task matters for dual-task-related gait changes in 16 older adults classified as transitionally frail. Mean stride time increased significantly when they walked and performed an arithmetic or a verbal fluency task compared with when they only walked (p < .001), whereas the coefficients of variation increased significantly only when they walked and performed the arithmetic task (p = .005) but not the verbal fluency task (p = .134). Those findings suggest that stride time variability under a dual-task condition depends on the type of walking-associated spoken verbal task.  相似文献   

13.
10 male collegiate runners (M age = 21.4, SD = 1.5 yr.) ran on a treadmill with no body-weight support (BWS), 20% BWS, and 40% BWS conditions. In addition, they wore three different commercially available harnesses at the 20% and 40% BWS conditions. The aim was to run on the treadmill at a fast speed while maintaining an adequate step length. The purpose was to investigate how each harness changed running gait, and the differences in running gait between the harnesses with various body-weight support. Analysis of variance indicated significant restriction of upper body torso rotation between the harnesses at the 40% BWS conditions. Body-weight support resulted in a longer stride, decreased cadence, less vertical displacement of the center of mass, and diminished hip and ankle joint excursions. These changes indicated that increased body-weight support results in longer steps with the foot contacting the belt for a shorter period of time with less leg angular changes throughout the running cycling.  相似文献   

14.
This study was conducted to investigate the effects of speed-interactive treadmill training (SITT) using smartphone-based motion tracking technology on gait in stroke patients. Thirty-four chronic stroke patients were randomly divided into a SITT group (n = 18) and a standard treadmill training (control) group (n = 16). The SITT group underwent smartphone-based SSIT while the control group underwent standard treadmill training. Both groups performed the training for 35 min per session, 3 times per week, for 6 weeks. Both groups used nonmotorized treadmills so that patients could control the speed. Evaluation was conducted during the week before and after the training. The OptoGait system measured gait spatiotemporal parameters. Both groups showed significant improvement in the temporal and spatial gait parameters (p < .05). In the SITT group, compared to the control group, the two-way analysis of variance with repeated measures showed an improvement in the temporal and spatial gait parameters after the intervention period (p < .05). This study confirmed that SITT improved the gait function of stroke patients. Based on this result, the authors propose that SITT, by improving gait, can be used as an effective training method to improve patients' functional activities in the clinic.  相似文献   

15.
Computerized adaptive testing in personality assessment can improve efficiency by significantly reducing the number of items administered to answer an assessment question. Two approaches have been explored for adaptive testing in computerized personality assessment: item response theory and the countdown method. In this article, the authors review the literature on each and report the results of an investigation designed to explore the utility, in terms of item and time savings, and validity, in terms of correlations with external criterion measures, of an expanded countdown method-based research version of the Minnesota Multiphasic Personality Inventory-2 (MMPI-2), the MMPI-2 Computerized Adaptive Version (MMPI-2-CA). Participants were 433 undergraduate college students (170 men and 263 women). Results indicated considerable item savings and corresponding time savings for the adaptive testing modalities compared with a conventional computerized MMPI-2 administration. Furthermore, computerized adaptive administration yielded comparable results to computerized conventional administration of the MMPI-2 in terms of both test scores and their validity. Future directions for computerized adaptive personality testing are discussed.  相似文献   

16.
The current profile of gait control in children with ADHD is incomplete and predominately based on children walking forward at a self-selected pace. There are no studies of potential gait deficits in this clinical population when walking in different directions in combination with varying rates of stepping that are freely selected and entrained to an external stimulus. The purpose of the current study was to address this lack of information by assessing gait of children aged 7–17 years with (n = 17) and without (n = 26) ADHD. Participants walked forward and backward along an electronically instrumented carpet at a self-selected stepping rate and in synchrony to a metronome that dictated an increased and decreased stepping rate. Using repeated measures analysis of covariance (ANCOVA) to assess spatiotemporal gait parameters, results showed that children with ADHD exhibited a significantly exaggerated, toes ‘turned out,’ foot position for all walking conditions compared to typically developing children. When walking backward, children with ADHD produced an increased step width, higher stepping cadence, and increased velocity. Additionally, coefficient of variation ratios indicated that children with ADHD produced greater variability of velocity, cadence, and step time for all walking conditions, and greater variability for stride length when walking at an increased stepping rate. Results were interpreted in terms of clinical significance and practical ramifications that inform rehabilitation specialists in designing therapies that ameliorate the reported gait deficits.  相似文献   

17.
It has been reported that obstacle avoidance reactions during gait have very short latencies. This raises the question whether the cortex can be involved, as it is in voluntary reactions. In this study, latencies of obstacle avoidance (OA) reactions were determined and related to latencies of voluntary stride modifications and simple reaction times (SRT) of hand and foot. Twenty-five healthy young adults participated in this study. While they were walking on the treadmill, an obstacle suddenly fell in front of their left leg. The first reaction to the obstacle was the moment at which the differentiated acceleration curve of the foot deviated from the control signal. Latencies of OA reactions were 122 ms (SD 14 ms) on average. Two very different avoidance reactions (lengthening and shortening of the stride) were noticed, but there was no avoidance strategy effect on OA latencies. OA latencies were significantly shorter as compared to latencies of voluntary stride modifications and simple reaction times of hand and foot. The short OA latencies could not only be explained from the dynamic nature of the task. It is suggested that subcortical pathways might be involved in obstacle avoidance.  相似文献   

18.
In recent years, there has been considerable interest in the effects of auditory and visual distractions on pedestrian ambulation. A fundamental temporal characteristic of ambulation is the temporal fluctuation of the stride interval. In this paper, we investigate the stationarity of stride interval time series when people are exposed to different forms of auditory and visual distractions. An increase in nonstationary behavior may be suggestive of divided attention and more frequent central modulation of locomotion, both of which may have ramifications on pedestrian vigilance and responsiveness to environmental perturbations. One group of fifteen able-bodied (6 females) young adult participants completed a music protocol (overground walking with and without music). A second group of fifteen (7 females) did a television protocol (treadmill walking while watching TV with and without sound). Three walking trials, each 15min in duration, were performed at each participant's comfortable walking speed, with force sensitive resistors under the heel of each foot. Using the reverse arrangements test, the vast majority of time series were nonstationary, with a time-varying mean as the principal source of nonstationarity. Furthermore, the television trial with sound had the greatest number of nonstationarities followed by overground walking while listening to music. We discuss the possibility that these conditions measurably affect gait dynamics through a subconscious synchronization to external rhythms or a cyclic distraction followed by a period of increased conscious correction of gait timing. Our findings suggest that the regulation of stride timing is particularly susceptible to constant, time-evolving auditory stimuli, but that normal pacing can be restored quickly upon stimulus withdrawal. These kinds of sensory distractions should thus be carefully considered in studies of pedestrian ambulation.  相似文献   

19.
Dual-task related gait changes have been previously reported for healthy older adults, suggesting that gait control requires attention. Compared to balance control, the involvement of attention in the control of the rhythmic stepping mechanism, as reflected by stride time variability, is not well known. In particular, under dual-task, the relative contributions of a second, attention-demanding task and changes in walking speed remain unclear. Thus, the aims of this study were (1) to assess whether walking with a slow-selected speed or walking while performing an attention-demanding task affected stride time variability in a sample of healthy older participants, and (2) to establish whether stride time variability under dual-task conditions is related either to the decrease of walking speed or the simultaneous attention-demanding task, or to both. Forty-five healthy older participants performed four experimental conditions: (1) walking at a normal self-selected speed, (2) walking at a slow self-selected speed, (3) performing a verbal fluency task when sitting on a chair, and (4) performing the verbal fluency task while walking at self-selected walking speed. Gait parameters were recorded across 15 meters, using Physilog. Results showed a significant dual-task related decrease in mean values of stride velocity, as well as a significant increase in mean values and coefficients of variation of stride time. These dual-task related changes in stride time were explained by the simultaneous performance of the verbal fluency task, the decrease of gait speed and the variability between participants. Although a relationship exists between decreased walking speed and increased stride time variability, the dual-task related increase of stride time variability was also significantly associated with the attention-demanding task, suggesting some attentional control for the rhythmic stepping mechanism of walking in healthy older adults.  相似文献   

20.
In this article, an automated and accurate mouse observation method, based on a conventional test for motor function evaluation, is outlined. The proposed measurement technique was integrated in a regular open-field test, where the trajectory and locomotion of a free-moving mouse were measured simultaneously. The system setup consisted of a transparent cage and a camera placed below it with its lens pointing upward, allowing for images to be captured from underneath the cage while the mouse was walking on the transparent cage floor. Thus, additional information was obtained about the position of the limbs of the mice for gait reconstruction. In a first step, the camera was calibrated as soon as it was fixed in place. A linear calibration factor, relating distances in image coordinates to real-world dimensions, was determined. In a second step, the mouse was located and its body contour segmented from the image by subtracting a previously taken “background” image of the empty cage from the camera image. In a third step, the movement of the mouse was analyzed and its speed estimated from its location in the past few images. If the speed was above a 1-sec threshold, the mouse was recognized to be running, and the image was further processed for footprint recognition. In a fourth step, color filtering was applied within the recovered mouse region to measure the position of the mouse’s paws, which were visible in the image as small pink spots. Paws that were detected at the same location in a number of subsequent images were kept as footprints—that is, paws in contact with the cage floor. The footprints were classified by their position relative to the mouse’s outline as corresponding to the front left or right paw or the hind left or right paw. Finally, eight parameters were calculated from the footprint pattern to describe the locomotion of the mouse: right/left overlap, front/hind base, right/left front limb stride, and right/left hind limb stride. As an application, the system was tested using normal mice and mice displaying pentobarbital-induced ataxia. The footprint parameters measured using the proposed system showed differences of 10% to 20% between normal and ataxic mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号