首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Previous research in the dorsal CA1 and dorsal CA3 subregions of the hippocampus has been shown to play an important role in mediating temporal order memory for spatial location information. What is not known is whether the dorsal CA3 and dorsal CA1 subregions of the hippocampus are also involved in temporal order for visual object information. Rats with dorsal CA1, dorsal CA3 or control lesions were tested in a temporal order task for visual objects using an exploratory paradigm. The results indicated that the controls and the dorsal CA3 lesioned rats preferred the first rather then the last object they had explored previously, indicating good memory for temporal order of object presentation. In contrast, rats with dorsal CA1 lesions displayed a profound deficit in remembering the order of the visual object presentations in that they preferred the last object rather than the first. All three groups of rats preferred a novel object compared to a previously explored object suggesting normal detection of visual object novelty. The results suggest that only the dorsal CA1, but not dorsal CA3, region is critical for processing temporal information for visual objects without affecting the detection of new visual objects.  相似文献   

2.
The role of the hippocampus in object recognition memory processes is unclear in the current literature. Conflicting results have been found in lesion studies of both primates and rodents. Procedural differences between studies, such as retention interval, may explain these discrepancies. In the present study, acute lidocaine administration was used to temporarily inactivate the hippocampus prior to training in the spontaneous object recognition task. Male C57BL/6J mice were administered bilateral lidocaine (4%, 0.5 microl/side) or aCSF (0.5 microl/side) directly into the CA1 region of the dorsal hippocampus 5 min prior to sample object training, and object recognition memory was tested after a short ( 5 min) or long (24 h) retention interval. There was no effect of intra-hippocampal lidocaine on the time needed for mice to accumulate sample object exploration, suggesting that inactivation of the hippocampus did not affect sample session activity or the motivation to explore objects. Lidocaine-treated mice exhibited impaired object recognition memory, measured as reduced novel object preference, after a 24 h but not a 5 min retention interval. These data support a delay-dependent role for the hippocampus in object recognition memory, an effect consistent with the results of hippocampal lesion studies conducted in rats. However, these data are also consistent with the view that the hippocampus is involved in object recognition memory regardless of retention interval, and that object recognition processes of parahippocampal structures (e.g., perirhinal cortex) are sufficient to support object recognition memory over short retention intervals.  相似文献   

3.
The social environment is thought to have a strong impact on cognitive functions. In the present study, we investigated whether social enrichment could affect rats’ memory ability using the “Different Objects Task (DOT),” in which the levels of memory load could be modulated by changing the number of objects to be remembered. In addition, we applied the DOT to a social discrimination task using unfamiliar conspecific juveniles instead of objects. Animals were housed in one of the three different housing conditions after weaning [postnatal day (PND) 21]: social-separated (1 per cage), standard (3 per cage), or social-enriched (10 per cage) conditions. The object and social recognition tasks were conducted on PND 60. In the sample phase, the rats were allowed to explore a field in which 3, 4, or 5 different, unfamiliar stimuli (conspecific juveniles through a mesh or objects) were presented. In the test phase conducted after a 5-min delay, social-separated rats were able to discriminate the novel conspecific from the familiar ones only under the condition in which three different conspecifics were presented; social-enriched rats managed to recognize the novel conspecific even under the condition of five different conspecifics. On the other hand, in the object recognition task, both social-separated and social-enriched rats were able to discriminate the novel object from the familiar ones under the condition of five different objects. These results suggest that social enrichment can enhance social, but not object, memory span.  相似文献   

4.
Upon retrieval, consolidated memories are again rendered vulnerable to the action of metabolic blockers, notably protein synthesis inhibitors. This has led to the hypothesis that memories are reconsolidated at the time of retrieval, and that this depends on protein synthesis. Ample evidence indicates that the hippocampus plays a key role both in the consolidation and reconsolidation of different memories. Despite this fact, at present there are no studies about the consequences of hippocampal protein synthesis inhibition in the storage and post-retrieval persistence of object recognition memory. Here we report that infusion of the protein synthesis inhibitor anisomycin in the dorsal CA1 region immediately or 180 min but not 360 min after training impairs consolidation of long-term object recognition memory without affecting short-term memory, exploratory behavior, anxiety state, or hippocampal functionality. When given into CA1 after memory reactivation in the presence of familiar objects, ANI did not affect further retention. However, when administered into CA1 immediately after exposing animals to a novel and a familiar object, ANI impaired memory of both of them. The amnesic effect of ANI was long-lasting, did not happen after exposure to two novel objects, following exploration of the context alone, or in the absence of specific stimuli, suggesting that it was not reversible but was contingent on the reactivation of the consolidated trace in the presence of a salient, behaviorally relevant novel cue. Our results indicate that hippocampal protein synthesis is required during a limited post-training time window for consolidation of object recognition memory and show that the hippocampus is engaged during reconsolidation of this type of memory, maybe accruing new information into the original trace.  相似文献   

5.
In this task rats had to learn that a three-dimensional object stimulus (a rectangle) that was visible for 2 s would result in a positive (go) reinforcement for one object (a ball) and no reinforcement (no go) for a different object (a bottle). However, if the rectangle stimulus was visible for 8 s then there would be no reinforcement for the ball (no go), but a reinforcement for the bottle (go). After rats learned this conditional discrimination by responding differentially in terms of latency to approach the object, they received large (dorsal and ventral) lesions of the hippocampus, lesions of the medial prefrontal cortex (anterior cingulate and precentral cortex), lesions of the cortex dorsal to the dorsal hippocampus, or served as sham-operated controls. Following recovery from surgery they were retested. The results indicate that there were major impairments following hippocampal lesions, in contrast to cortical control and medial prefrontal cortex lesions, as indicated by smaller latency differences between positive and negative trials on postsurgery tests. In order to ensure that the deficits observed with hippocampal lesions were not due to a discrimination problem, new rats were trained in an object (gray cylinder) duration discrimination task. In this go/no go procedure, the rats were reinforced for a 2-s exposure (duration) of the gray cylinder, but not a 10-s duration, or vice versa. The results indicate that after hippocampal lesions, there was an initial deficit followed by complete recovery. There were no significant changes for the medial prefrontal, cortical control, or sham-operated animals. It appears that the hippocampus, but not the medial prefrontal cortex, is actively involved in representing in short-term memory temporal attribute information based on the use of markers for the beginning and end of the presence (duration) of a stimulus (object).  相似文献   

6.
Recent studies in patients with hippocampal lesions have indicated that the degree of memory impairment is proportional to the extent of damage within the hippocampus. Particularly, patients with damage restricted to the CA1 field demonstrate moderate to severe anterograde amnesia with only slight retrograde amnesia. Comparable results are also seen in other species such as non-human primates and rats; however, the effect of selective damage to CA1 has not yet been characterized in mice. In the present study, we investigated the effects of excitotoxic (NMDA) lesions of dorsal CA1 on several aspects of learning and memory performance in mice. Our data indicate that dorsal CA1 lesioned mice are hyperactive upon exposure to a novel environment, have spatial working memory impairments in the Y-maze spontaneous alternation task, and display deficits in an 8-arm spatial discrimination learning task. Lesioned mice are able to acquire an operant lever-press task but demonstrate extinction learning deficits in this appetitive operant paradigm. Taken together, our results indicate that lesions to dorsal CA1 in mice induce selective learning and memory performance deficits similar to those observed in other species, and extend previous findings indicating that this region of the hippocampus is critically involved in the processing of spatial information and/or the processing of inhibitory responses.  相似文献   

7.
Evidence indicates that activation of the neuronal protein synthesis machinery is required in areas of the brain relevant to memory for consolidation and persistence of the mnemonic trace. Here, we report that inhibition of hippocampal mTOR, a protein kinase involved in the initiation of mRNA translation, immediately or 180min but not 540min after training impairs consolidation of long-term object recognition memory without affecting short-term memory retention or exploratory behavior. When infused into dorsal CA1 after long-term memory reactivation in the presence of familiar objects the mTOR inhibitor rapamycin (RAP) did not affect retention. However, when given immediately after exposing animals to a novel and a familiar object, RAP impaired memory for both of them. The amnesic effect of the post-retrieval administration of RAP was long-lasting, did not happen after exposure to two novel objects or following exploration of the training arena in the absence of other stimuli, suggesting that it was contingent with reactivation of the consolidated trace in the presence of a behaviorally relevant and novel cue. Our results indicate that mTOR activity is required in the dorsal hippocampus for consolidation of object recognition memory and suggest that inhibition of this kinase after memory retrieval in the presence of a particular set of cues hinders persistence of the original recognition memory trace.  相似文献   

8.
We explored the circumstances in which rats engage either declarative memory (and the hippocampus) or habit memory (and the dorsal striatum). Rats with damage to the hippocampus or dorsal striatum were given three different two-choice discrimination tasks (odor, object, and pattern). These tasks differed in the number of trials required for learning (~10, 60, and 220 trials). Dorsal striatum lesions impaired discrimination performance to a greater extent than hippocampal lesions. Strikingly, performance on the task learned most rapidly (the odor discrimination) was severely impaired by dorsal striatum lesions and entirely spared by hippocampal lesions. These findings suggest that discrimination learning in the rat is primarily supported by the dorsal striatum (and habit memory) and that rats engage a habit-based memory system even for a task that takes only a few trials to acquire. Considered together with related studies of humans and nonhuman primates, the findings suggest that different species will approach the same task in different ways.  相似文献   

9.
Across many areas of study in cognition, the capacity of working memory (WM) is widely agreed to be roughly three to five items: three to five objects (i.e., bound collections of object features) in the literature on visual WM or three to five role bindings (i.e., objects in specific relational roles) in the literature on memory and reasoning. Three experiments investigated the capacity of observers’ WM for the spatial relations among objects in a visual display, and the results suggest that the “items” in WM are neither simply objects nor simply role bindings. The results of Experiment 1 are most consistent with a model that treats an “item” in visual WM as an object, along with the roles of all its relations to one other object. Experiment 2 compared observers’ WM for object size with their memory for relative size and provided evidence that observers compute and store objects’ relations per se (rather than just absolute size) in WM. Experiment 3 tested and confirmed several more nuanced predictions of the model supported by Experiment 1. Together, these findings suggest that objects are stored in visual WM in pairs (along with all the relations between the objects in a pair) and that, from the perspective of WM, a given object in one pair is not the same “item” as that same object in a different pair.  相似文献   

10.
初步探讨毫秒范围内,客体信息保持对时间知觉的影响。实验一发现,知觉到的时间不受记忆负荷的影响,但当保持时间短时,低负荷的反应时低于高负荷的反应时;实验二仅要求被试完成时间知觉任务,发现知觉负荷异于记忆负荷对时间知觉的影响。结果说明,客体工作记忆保持对时间知觉的影响受到工作记忆资源的调节。  相似文献   

11.
Evidence indicates that brain endocannabinoids are involved in memory processing. However, the participation of CB1 and CB2 cannabinoid receptors in recognition memory has not been yet conclusively determined. Therefore, we evaluated the effect of the posttraining activation of hippocampal cannabinoid receptors on the consolidation of object recognition memory. Rats with infusion cannulae stereotaxically aimed to the CA1 region of the dorsal hippocampus were trained in an object recognition learning task involving exposure to two different stimulus objects. Memory retention was assessed at different times after training. In the test sessions, one of the objects presented during training was replaced by a novel one. When infused in the CA1 region immediately after training, the non-selective cannabinoid receptor agonist WIN-55,212-2 and the endocannabinoid membrane transporter inhibitor VDM-11 blocked long-term memory retention in a dose-dependent manner without affecting short-term memory, exploratory behavior, anxiety state or the functionality of the hippocampus. The amnesic effect of WIN-55,212-2 and VDM-11 was not due to state-dependency and was completely reversed by co-infusion of the CB1 receptor antagonist AM-251 and mimicked by the CB1 receptor agonist ACEA but not by the CB2 receptor agonists JWH-015 and palmitoylethanolamide. Our data indicate that activation of hippocampal CB1 receptors early after training hampers consolidation of object recognition memory.  相似文献   

12.
Cued retrieval of memory is typically examined with delay when testing hippocampal functions, as in delayed matching-to-sample tasks. Equally emphasized in the literature, on the other hand, is the hippocampal involvement in making arbitrary associations. Paired associate memory tasks are widely used for examining this function. However, the two variables (i.e., delay and paired association) were often mixed in paired associate tasks, and this makes it difficult to localize the cognitive source of deficits with hippocampal perturbation. Specifically, a few studies have recently shown that rats can learn arbitrary paired associations between certain locations and nonspatial items (e.g., object or flavor) and later can retrieve the paired location when cued by the item remotely. Such tasks involve both (1) delay between sampling the cue and retrieving the target location and (2) arbitrary association between the cueing object and its paired location. Here, we tested whether delay was necessary in a cued paired associate task by using a task in which no delay existed between object cueing and the choice of its paired associate. Moreover, fixed associative relationships between the cueing objects and their paired locations were repeatedly used, thus involving no trial-unique association. Nevertheless, inactivations of the dorsal hippocampus with muscimol severely disrupted retrieval of paired associates, whereas the same manipulations did not affect discriminating individual objects or locations. The results powerfully demonstrate that the hippocampus is inherently required for retrieving paired associations between objects and places, and that delay and trial uniqueness of the paired associates are not necessarily required.  相似文献   

13.
Although domestic dogs can respond to many facial cues displayed by other dogs and humans, it remains unclear whether they can differentiate individual dogs or humans based on facial cues alone and, if so, whether they would demonstrate the face inversion effect, a behavioural hallmark commonly used in primates to differentiate face processing from object processing. In this study, we first established the applicability of the visual paired comparison (VPC or preferential looking) procedure for dogs using a simple object discrimination task with 2D pictures. The animals demonstrated a clear looking preference for novel objects when simultaneously presented with prior-exposed familiar objects. We then adopted this VPC procedure to assess their face discrimination and inversion responses. Dogs showed a deviation from random behaviour, indicating discrimination capability when inspecting upright dog faces, human faces and object images; but the pattern of viewing preference was dependent upon image category. They directed longer viewing time at novel (vs. familiar) human faces and objects, but not at dog faces, instead, a longer viewing time at familiar (vs. novel) dog faces was observed. No significant looking preference was detected for inverted images regardless of image category. Our results indicate that domestic dogs can use facial cues alone to differentiate individual dogs and humans and that they exhibit a non-specific inversion response. In addition, the discrimination response by dogs of human and dog faces appears to differ with the type of face involved.  相似文献   

14.
When visual stimuli (letters, words or pictures of objects) are presented sequentially at high rates (8–12 items/s), observers have difficulty in detecting and reporting both occurrences of a repeated item: This is repetition blindness. Two experiments investigated the effects of repetition of novel objects, and whether the representations bound to episodic memory tokens that yield repetition blindness are viewpoint dependent or whether they are object centred. Subjects were shown coloured drawings of simple three‐dimensional novel objects, and rate of presentation (Experiment 1) and rotation in depth (Experiment 2) were manipulated. Repetition blindness occurred only at the higher rate (105 ms/item), and was found even for stimuli differing in orientation. We conclude that object‐centred representations are bound to episodic memory tokens, and that these are constructed prior to object recognition operating on novel as well as known objects. These results are contrasted with those found with written materials, and implications for explanations of repetition blindness are considered.  相似文献   

15.
Although the medial temporal lobe (MTL) is known to be essential for episodic encoding, the contributions of individual MTL subregions remain unclear. Data from recognition memory studies have provided evidence that the hippocampus supports relational encoding important for later episodic recollection, whereas the perirhinal cortex has been linked with encoding that supports later item familiarity. However, extant data also strongly implicate the perirhinal cortex in object processing and encoding, suggesting that perirhinal processes may contribute to later episodic recollection of object source details. To investigate this possibility, encoding activation in MTL subregions was analyzed on the basis of subsequent memory outcome while participants processed novel scenes paired with 1 of 6 repeating objects. Specifically, encoding activation correlating with later successful scene recognition memory was evaluated against that of source recollection for the object paired with the scene during encoding. In contrast to studies reporting a link between perirhinal cortex and item familiarity, it was found that encoding activation in the right perirhinal cortex correlates with successful recollection of the paired object. Furthermore, other MTL subregions also exhibited content-specific source encoding patterns of activation, suggesting that MTL subsequent memory effects are sensitive to stimulus category.  相似文献   

16.
Naming novel objects with novel count nouns changes how the objects are drawn from memory, revealing that object categorisation induces reliance on orientation-independent visual representations during longer-term remembering, but not during short-term remembering. Serial position effects integrate this finding with a more established conceptualisation of short-term and longer-term visual remembering in which the former is identified as keeping an item in mind. Adults were shown a series of four novel objects in orientations in which they would not normally be drawn from memory. When not named ("Look at this object"), the objects were drawn in the orientations in which they had been seen. When named with a novel count noun (e.g., "Look at this dax"), the final object continued to be depicted in the orientation in which it had been seen, but all other objects were depicted in an unseen but preferred (canonical) orientation, even though participants could still remember the orientations in which they had been seen. Although orientation-dependent exemplar representations appear to be more accessible than orientation-independent generic representations during short-term remembering, the reverse is the case during longer-term remembering. How the theoretical framework emerging from these observations accommodates a broader body of evidence is discussed.  相似文献   

17.
ABSTRACT

Item-based directed forgetting (DF) was tested using 2-alternative forced-choice recognition to examine the effects of forgetting instructions on memory for perceptual detail and gist of categorised pictures of scenes and objects in three experiments. When the distractor is from the same category as the target (exemplar test condition), discrimination must be based on memory for perceptual details, whereas recognition can be based on gist or general category information when the distractor is from a novel category (novel test condition). Recognition accuracy was greater for Remember-cued than Forget-cued pictures when discrimination must be based on perceptual details in the exemplar test condition but not when discrimination could be based on gist in the novel test condition. Accuracy in scene and object recognition is greater for gist than for perceptual details, and DF instructions serve to reduce recognition memory based on perceptual details.  相似文献   

18.
The present experiment investigated the effects of quinolinic acid (90 mM) lesions of the prelimbic-infralimbic cortices on working memory for visual objects and on acquisition of a visual object discrimination. In both tests a GO/NO-GO procedure was used. In the working memory task, rats were tested before and after surgery. A continuous recognition procedure was used to assess working memory, which involved successive exposure to different three-dimensional objects that could be displaced to receive a cereal reinforcement. Of the 12 object presentations/session, 4 objects were presented for a second time in which displacing the object did not result in a reinforcement. The number of trials between the first and second presentations of an object ranged from 0 to 3 (lags). Memory was assessed by the latency to displace an object during the second presentation. In the visual object discrimination, rats had successive exposure to two different objects. Displacement of one object resulted in a cereal reinforcement, while displacement of the other did not. The findings indicated that prelimbic-infralimbic lesions significantly impaired memory for visual objects across all lags. Prelimbic-infralimbic lesions did not impair acquisition of the visual object discrimination. The results suggest that the prelimbic-infralimbic areas are part of neural system important in the short-term memory for visual objects.  相似文献   

19.
Research on the role of the hippocampus in object recognition memory has produced conflicting results. Previous studies have used permanent hippocampal lesions to assess the requirement for the hippocampus in the object recognition task. However, permanent hippocampal lesions may impact performance through effects on processes besides memory consolidation including acquisition, retrieval, and performance. To overcome this limitation, we used an intrahippocampal injection of the GABA agonist muscimol to reversibly inactivate the hippocampus immediately after training mice in two versions of an object recognition task. We found that the inactivation of the dorsal hippocampus after training impairs object-place recognition memory but enhances novel object recognition (NOR) memory. However, inactivation of the dorsal hippocampus after repeated exposure to the training context did not affect object recognition memory. Our findings suggest that object recognition memory formation does not require the hippocampus and, moreover, that activity in the hippocampus can interfere with the consolidation of object recognition memory when object information encoding occurs in an unfamiliar environment.The medial temporal lobe plays an important role in recognition memory formation, as damage to this brain structure in humans, monkeys, and rodents impairs performance in recognition memory tasks (for review, see Squire et al. 2007). Within the medial temporal lobe, studies have consistently demonstrated that the perirhinal cortex is involved in this form of memory (Brown and Aggleton 2001; Winters and Bussey 2005; Winters et al. 2007, 2008; Balderas et al. 2008). In contrast, the role of the hippocampus in object recognition memory remains a source of debate. Some studies have reported novel object recognition (NOR) impairments in animals with hippocampal lesions (Clark et al. 2000; Broadbent et al. 2004, 2010), yet others have reported no impairments (Winters et al. 2004; Good et al. 2007). Differences in hippocampal lesion size and behavioral procedures among the different studies have been implicated as the source of discrepancy in these findings (Ainge et al. 2006), but previous studies have not examined the consequences of environment familiarity on the hippocampus dependence of object recognition memory.Previous studies addressing the role of the hippocampus in recognition memory relied on permanent, pre-training lesions (Clark et al. 2000; Broadbent et al. 2004; Winters et al. 2004; Good et al. 2007). Permanent lesions inactivate the hippocampus not only during the consolidation phase, but also during habituation, acquisition, and memory retrieval, potentially confounding interpretation of the results. Furthermore, permanent lesion studies require long surgery recovery times during which extrahippocampal changes may emerge to mask or compensate for the loss of hippocampal function. To overcome these problems, we reversibly inactivated the dorsal hippocampus after training mice in two versions of the object recognition task. We infused muscimol, a γ-aminobutyric acid (GABA) receptor type A agonist, into the dorsal hippocampus immediately after training in an object-place recognition task or immediately following training in a NOR task. Consistent with previous studies (Save et al. 1992; Galani et al. 1998; Mumby et al. 2002; Stupien et al. 2003; Aggleton and Brown 2005), we observed that hippocampal inactivation impairs object-place recognition memory. Interestingly, we observed that the degree of contextual familiarity can influence NOR memory formation. We found that when shorter periods of habituation to the experimental environment were used, hippocampal inactivation enhances long-term NOR memory. In contrast, after extended periods of contextual habituation, long-term recognition memory was unaltered by hippocampal inactivation. Together these results suggest that if familiarization with objects occurs at a stage in which the contextual environment is relatively novel, the hippocampus plays an inhibitory role on the consolidation of object recognition memory. Supporting this view, we observed that object recognition memory is unaffected by hippocampal inactivation when initial exploration of the objects occurred in a familiar environment.  相似文献   

20.
This paper reviews evidence from neuropsychological patient studies relevant to two questions concerning the functions of the medial temporal lobe in humans. The first is whether the hippocampus and the adjacent perirhinal cortex make different contributions to memory. Data are discussed from two patients with adult-onset bilateral hippocampal damage who show a sparing of item recognition relative to recall and certain types of associative recognition. It is argued that these data are consistent with Aggleton and Brown's (1999) proposal that familiarity-based recognition memory is not dependent on the hippocampus but is mediated by the perirhinal cortex and dorso-medial thalamic nucleus. The second question is whether the recognition memory deficit observed in medial temporal lobe amnesia can be explained by a deficit in perceptual processing and representation of objects rather than a deficit in memory per se. The finding that amnesics were impaired at recognizing, after short delays, patterns that they could successfully discriminate suggests that their memory impairment did not result from an object-processing deficit. The possibility remains, however, that the human perirhinal cortex plays a role in object processing, as well as in recognition memory, and data are presented that support this possibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号