首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to investigate the effects of aging and the role of augmented visual information in the acquisition of a new bimanual coordination pattern, namely a 90° relative phase pattern. In a pilot study, younger and older adults received augmented visual feedback in the form of a real-time orthogonal display of both limb movements after every fifth trial. Younger adults acquired this task over three days of practice and retained the task well over periods of one week and one month of no practice while the older adults showed no improvement at all on the task. It was hypothesized that the amount of augmented information was not sufficient for the older adults to overcome the strong tendency to perform natural, intrinsically stable coordination patterns, which consequently prevented them from learning the task. The present study evaluated the age-related role of augmented visual feedback for learning the new pattern. Participants were randomly assigned within age groups to receive either concurrent or terminal visual feedback after every trial in acquisition. In contrast to the pilot study, all of the older adults learned the pattern, although not to the same level as the younger adults. Both younger and older adults benefitted from concurrent visual feedback, but the older adults gained more from the concurrent feedback than the younger adults, relative to terminal feedback conditions. The results suggest that when learning bimanual coordination patterns, older adults are more sensitive to the structure of the practice conditions, particularly the availability of concurrent visual information. This greater sensitivity to the learning environment may reflect a diminished capacity for inhibitory control and a decreased ability to focus attention on the salient aspects of learning the task.  相似文献   

2.
The role of intrinsic and extrinsic information feedback in learning a new bimanual coordination pattern was investigated. The pattern required continuous flexion-extension movements of the upper limbs with a 90 ° phase offset. Separate groups practiced the task under one of the following visual feedback conditions: (a) blindfolded (reduced FB group), (b) with normal vision (normal FB group), or (c) with concurrent relative motion information (enhanced FB group). All groups were subjected to three different transfer test conditions at regular intervals during practice. These tests included reduced, normal vision, and enhanced vision conditions. Experiment 1 showed that the group receiving augmented information feedback about its relative motions in real-time produced the required coordination pattern more successfully than the remaining two groups, irrespective of the transfer conditions under which performance was evaluated. Experiment 2 replicated and extended the superiority of the enhanced feedback group during acquisition and retention. Experiment 3 demonstrated that successful transfer to various transfer test conditions was not a result of test-trial effects. Overall, the data suggest that the conditions that optimized performance of the coordination pattern during acquisition also optimized transfer performance.  相似文献   

3.
According to a dynamic theory of learning, how a new memory is formed depends on the stability of the nearest preexisting memories. To predict retention after practice, the authors analyzed how 15 participants memorized 2 bimanual coordination patterns (45 degrees or 135 degrees relative phase). The authors assessed (a) how participants memorized the required patterns with learning and (b) how the associated memory layout evolved. Results showed that a practiced 45 degrees pattern near a very stable memory (0 degrees ) persisted, whereas a 135 degrees pattern near a less stable memory (180 degrees ) was forgotten. Those findings corroborate the proposition that retention of coordination patterns depends on the stability of the extant motor memories. The authors discuss that proposal in terms of the coevolution of accuracy and stability with learning to predict persistence of required or false memories.  相似文献   

4.
The authors investigated whether neuromuscular and directional constraints are dissociable limitations that affect learning and transfer of a bimanual coordination pattern. Participants (N = 9) practiced a 45 degrees muscular relative phasing pattern in the transverse plane over 4 days. The corresponding to-be-learned spatial relative phasing was 225 degrees. Before, during, and following practice, the authors administered probe tests in the sagittal plane to assess transfer of learning. In the probe tests, participants performed various patterns characterized by different muscular and spatial relative phasing (45 degrees, 45 degrees, 45 degrees, 225 degrees, 225 degrees, 45 degrees, and 225 degrees, 225 degrees). The acquisition of the to-be-learned pattern in the transverse plane resulted in spontaneous positive transfer of learning only to coordination patterns having 45 degrees of spatial relative phase, irrespective of muscular phasing. Moreover, transfer occurred in the sagittal plane to coordination patterns that had symmetry properties similar to those of the to-be-learned pattern. The authors conclude that learning and transfer of spatial features of coordination patterns from the transverse to the sagittal plane of motion are mediated by mirror-symmetry constraints.  相似文献   

5.
Two groups (n = 10 in each) practiced a novel, bimanual coordination pattern that was demonstrated on video. One of the groups received augmented video feedback of their own responses after each trial following a demonstration. The video-feedback group showed better performance in acquisition and retention than the no-feedback group. On error-detection tests, the video-feedback group was better able to distinguish between correct and incorrect movement patterns. The authors concluded that video feedback helps to make relative phase information salient by aiding the discrimination process. Prepractice ability on a scanning task revealed that individuals who persevered with in-phase-type movements, even though the task demands dictated otherwise, had the most difficulty determining and subsequently performing the required movement. Video feedback helped them to compensate for those difficulties.  相似文献   

6.
In stance, rotations around the hips and ankles typically exhibit a relative phase close to 20 degrees or 180 degrees . In 2 experiments, the authors studied the reciprocal influence of those coordination tendencies with learning an ankle-hip relative phase of 135 degrees . Before, during, and after learning a new mode of coordination, they assessed participants' (N = 24 in each experiment) spontaneous postural patterns with a tracking task in which no specific coordination was required. Learning the 135 degrees phase relation led to persistent modifications of the spontaneous in-phase and antiphase modes. Contrary to the theoretical predictions of the dynamical approach, the initial stability of the preexisting patterns did not influence the difficulty of producing the new mode or the improvement in performance during learning. Initial stability did, however, influence the rate and type of modification of spontaneous patterns. The authors discuss the results in relation to conclusions drawn from bimanual studies.  相似文献   

7.
Results from recent experiments (e.g., Kovacs, Buchanan, & Shea, 2009a–b, 2010a,b) suggest that when salient visual information is presented using Lissajous plots bimanual coordination patterns typically thought to be very difficult to perform without extensive practice can be performed with remarkably low relative phase error and variability with 5 min or less of practice. However, when this feedback is removed, performance deteriorates. The purpose of the present experiment was to determine if reducing the frequency of feedback presentation will decrease the participant's reliance on the feedback and will facilitate the development of an internal representation capable of sustaining performance when the Lissajous feedback is withdrawn. The results demonstrated that reduced frequency Lissajous feedback results in very effective bimanual coordination performance on tests with Lissajous feedback available and when feedback is withdrawn. Taken together the present experiments add to the growing literature that supports the notion that salient perceptual information can override some aspects of the system's intrinsic dynamics typically linked to motor output control. Additionally, the present results suggest that the learning of both externally and internally driven bimanual coordination is facilitated by providing reduced frequency Lissajous feedback.  相似文献   

8.
On the basis of findings emphasizing the role of perceptual consequences in movement coordination, the authors tested the hypothesis that the learning of a new bimanual relative phase pattern would involve the matching of the movement-related sensory consequences (rather than the motor outflow commands) to the to-be-learned pattern. Two groups of participants (n = 10 in each) practiced rhythmically moving their forearms with a phase difference of 30 degrees . In 1 group, a difference in the arms' eigenfrequencies was imposed such that synchronous generation of the left and right motor commands resulted in the required relative phase (30 degrees ), yielding incongruence between the motor commands and their sensory consequences. In the other group, the experimenter imposed no eigenfrequency difference so that the sensory consequences were congruent with the motor commands. Throughout the practice period, performance of both groups was assessed repeatedly for the congruent situation (i.e., no eigenfrequency difference). On those criterion tests, both groups performed the required pattern equally well. The authors discuss that result, which corroborated the hypothesis, from a dynamical systems perspective.  相似文献   

9.
This paper examines the informational activity devoted by the CNS to couple oscillating limbs in order to sustain and stabilize bimanual coordination patterns. Through a double-task paradigm associating a bimanual coordination task and a reaction time (RT) task, we investigated the relation between the stability of preferred bimanual coordination patterns and the central cost expended by the CNS for their stabilization. Ten participants performed in-phase and anti-phase coordination patterns in a dual task condition (coordination + RT) at several frequencies (0.5, 0.75, 1.0, 1.5, and 2.0 Hz), thereby decreasing the stability of the bimanual patterns. Results showed a U-shaped evolution of pattern stability and attentional cost, as a function of oscillation frequency, exhibiting a minimum value at the same frequency. These findings indicate that central cost and pattern stability covary and may share common, high order dynamics. Moreover, the attentional focus given to the bimanual coordination and the RT task was also manipulated by requiring either shared attention or priority to the coordination task. Such a manipulation led to a tradeoff between pattern stability and RT performance: The more stable the pattern, the more costly it is to stabilize. This suggests that stabilizing a coordination pattern incurs a central cost that depends on its intrinsic stability. Conceptual consequences of these results for understanding the relationship between attention and coordination are drawn, and the mechanisms putatively at work in dual tasks are discussed.  相似文献   

10.
Two groups (n = 10 in each) practiced a novel, bimanual coordination pattern that was demonstrated on video. One of the groups received augmented video feedback of their own responses after each trial following a demonstration. The video-feedback group showed better performance in acquisition and retention than the no-feedback group. On error-detection tests, the video-feedback group was better able to distinguish between correct and incorrect movement patterns. The authors concluded that video feedback helps to make relative phase information salient by aiding the discrimination process. Prepractice ability on a scanning task revealed that individuals who persevered with inphase-type movements, even though the task demands dictated otherwise, had the most difficulty determining and subsequently performing the required movement. Video feedback helped them to compensate for those difficulties.  相似文献   

11.
The authors manipulated movement amplitude in a bimanual circle-tracing task performed by 11 participants. With pacing frequency fixed, the systematic increase and decrease of circle diameter within a trial induced phase transitions from the asymmetric (33% of trials) to the symmetric bimanual circle-tracing pattern; the transitions resulted from a loss of stability in the asymmetric pattern. Tracing frequency varied inversely with circle diameter so that end-effector variability was minimized in a set of self-paced trials in which the circle diameter in a trial was fixed. In the amplitude-scaling trials, end-effector variability varied directly with circle diameter, a consistent speed-accuracy tradeoff. The results support the conclusion that movement amplitude is a nonspecific control parameter. The findings are discussed with reference to several factors, e.g., tactile feedback, the recruitment and suppression of biomechanical degrees of freedom, and the role those factors may play in stabilizing bimanual coordination patterns  相似文献   

12.
During bimanual movements, two relatively stable "inherent" patterns of coordination (in-phase and anti-phase) are displayed (e.g., Kelso, Am. J. Physiol. 246 (1984) R1000). Recent research has shown that new patterns of coordination can be learned. For example, following practice a 90 degrees out-of-phase pattern can emerge as an additional, relatively stable, state (e.g., Zanone & Kelso, J. Exp. Psychol.: Human Performance and Perception 18 (1992) 403). On this basis, it has been concluded that practice leads to the evolution and stabilisation of the newly learned pattern and that this process of learning changes the entire attractor layout of the dynamic system. A general feature of such research has been to observe the changes of the targeted pattern's stability characteristics during training at a single movement frequency. The present study was designed to examine how practice affects the maintenance of a coordinated pattern as the movement frequency is scaled. Eleven volunteers were asked to perform a bimanual forearm pronation-supination task. Time to transition onset was used as an index of the subjects' ability to maintain two symmetrically opposite coordinated patterns (target task - 90 degrees out-of-phase - transfer task - 270 degrees out-of-phase). Their ability to maintain the target task and the transfer task were examined again after five practice sessions each consisting of 15 trials of only the 90 degrees out-of-phase pattern. Concurrent performance feedback (a Lissajous figure) was available to the participants during each practice trial. A comparison of the time to transition onset showed that the target task was more stable after practice (p=0.025). These changes were still observed one week (p=0.05) and two months (p=0.075) after the practice period. Changes in the stability of the transfer task were not observed until two months after practice (p=0.025). Notably, following practice, transitions from the 90 degrees pattern were generally to the anti-phase (180 degrees ) pattern, whereas, transitions from the 270 degrees pattern were to the 90 degrees pattern. These results suggest that practice does improve the stability of a 90 degrees pattern, and that such improvements are transferable to the performance of the unpractised 270 degrees pattern. In addition, the anti-phase pattern remained more stable than the practised 90 degrees pattern throughout.  相似文献   

13.
Learning a bimanual coordination task (synchronization to a visually specified phasing relation) was studied as a dynamical process over 5 days of practicing a required phasing pattern. Systematic probes of the attractor layout of the 5 Ss' coordination dynamics (expressed through a collective variable, relative phase) were conducted before, during, and after practice. Depending on the relationship between the initial coordination dynamics (so-called intrinsic dynamics) and the pattern to be learned (termed behavioral information, which acts as an attractor of the coordination dynamics toward the required phasing), qualitative changes in the phase diagram occurred with learning, accompanied by quantitative evidence for loss of stability (phase transitions). Such effects persisted beyond 1 week. The nature of change due to learning (e.g., abrupt vs. gradual) is shown to arise from the cooperative or competitive interplay between behavioral information and the intrinsic dynamics.  相似文献   

14.
Visual information plays an adaptive role in the relation between bimanual force coupling and error corrective processes of isometric force control. In the present study, the evolving distribution of the relative phase properties of bimanual isometric force coupling was examined by scaling within a trial the temporal feedback rate of visual intermittency (short to long presentation intervals and vice versa). The force error (RMSE) was reduced, and time-dependent irregularity (SampEn) of the force output was increased with greater amounts of visual information (shorter intermittency). Multi-stable coordination patterns of bimanual isometric force control were differentially shifted toward and away from the intrinsic dynamics by the changing the intermittency of visual information. The distribution of Hilbert transformed relative phase values showed progressively a predominantly anti-phase mode under less intermittent visual information to predominantly an in-phase mode with limited (almost no) visual information. Correlation between the hands showed a continuous reduction, rather than abrupt “transition,” with increase in visual information, although no mean negative correlation was realized, despite the tendency towards an anti-phase distribution. Lastly, changes in both the performance outcome and bimanual isometric force coordination occurred at visual feedback rates faster than the minimal visual processing times established from single limb movement and isometric force protocols.  相似文献   

15.
Two predictions arising from previous theoretical and empirical work which demonstrated that spontaneous changes of bimanual coordination patterns result from a loss of pattern stability (i.e., a nonequilibrium phase transition) were tested: (a) that the time it takes to intentionally switch from one pattern to another depends on the differential stability of the patterns themselves; and (b) that an intention, defined as an intended behavioral pattern, can change the dynamical characteristics, e.g., the overall stability of the behavioral patterns. Subjects moved both index fingers rhythmically at one of six movement frequencies while performing either an in-phase or antiphase pattern of finger coordination. On cue from an auditory signal, subjects switched from the ongoing pattern to the other pattern. The relative phase of movement between the two fingers was used to characterize the ongoing coordinative pattern. The time taken to switch between patterns, or switching time, and relative phase fluctuations were used to evaluate the modified pattern dynamics resulting from a subject's intention to change patterns. Switching from the in-phase to the antiphase pattern was significantly slower than switching in the opposite direction for all subjects. Both the mean and distribution of switching times in each direction were found to be in agreement with model predictions. movement frequency had little effect on switching time, a finding that is also consistent with the model. Relative phase fluctuations were significantly larger when moving in the antiphase pattern at the highest movement frequencies studied. The results show that, although intentional influences act to modify a coordinative pattern's intrinsic dynamics, the influence of these dynamics on the resulting behavior is always present and is particularly strong at high movement frequencies.  相似文献   

16.
Learning of coordination patterns was investigated theoretically from the point of view of a dynamic theory of biological coordination and with reference to recent experiments on the learning of relative timing patterns. The theory is based on theoretical and experimental work showing that coordinated movement is characterized not only by the actually performed pattern of coordination but by an entire dynamics of coordination. Theoretically, such dynamics are captured as equations of motion of relevant collective variables. Experimentally, signatures of these underlying dynamics can be found in the temporal stability of coordination patterns, which can be assessed through various stability measures as well as through processes of pattern change. We argue that not only intrinsic coordination tendencies, but also specific behavioral requirements, be they perceived, memorized, or intended, must be expressed in terms of such dynamics. The concept of behavioral information captures such requirements as part of the coordination dynamics. We expound two hypotheses on the nature of learning in this framework. First, we assume that at each point during the learning process the system is governed by a well-defined coordination dynamics. This equation of motion evolves with learning so as to acquire an attractor solution near the to-be-learned pattern. Second, we hypothesize that this change of the coordination dynamics, captured by the time course of memorized behavioral information, can itself be ascribed to an additional layer of dynamics, the slower learning dynamics. Testable consequences of these views are discussed in the light of recent experimental findings on the learning of a relative phase in rhythmic movement: (a) Learning affects dynamic properties of performed coordination patterns, in particular, their stability; (b) the change of the coordination dynamics due to learning leads to specific changes of behavior also under conditions other than the learned condition, namely, to systematic deviation toward the learned patterns; (c) learning may lead to instabilities in the coordination behavior if initial and learned performance differ sufficiently; and (d) the dynamic properties of the performed coordination patterns are distinct on the two time scales of learning and of performance.  相似文献   

17.
This study investigated how learning a new bimanual coordination pattern affects the attentional resources allotted by the CNS to maintain it throughout the acquisition process. The repertoire of the existing stable coordination patterns was individually evaluated before and after practice in order to detect expected changes with learning. Bistable participants, who initially exhibited stable and accurate coordination patterns at 0° and 180° of relative phase, practiced a 90° pattern, whereas multistable participants, who already mastered the 90° pattern, practiced 135° pattern instead. In a typical dual-task paradigm, all participants had to simultaneously perform a reaction time task that assessed the associated attentional cost. Beyond an overall increase in accuracy, the results revealed a significant decrease in the attentional cost for bistable participants, accompanying the stabilization of the 90° pattern with learning, but not for multistable participants, as the 135° pattern barely stabilized. Pattern stability and attentional cost co-evolve during learning and the process follows two different routes depending on the interplay between the task and the learner’s coordination abilities before practice.  相似文献   

18.
The authors manipulated movement amplitude in a bimanual circle-tracing task to alter the natural tracing frequency of the arms. Participants (N = 14) traced different-diameter circles simultaneously with the two arms in either in-phase (0 degrees) or antiphase (180 degrees) coordination, using the index fingers or plastic styli. Movement amplitude altered the natural tracing frequency of the arms, as demonstrated by the following 2 findings: (a) The larger the difference in circle diameter, the larger was the shift from the fixed-point values of 0 degrees and 180 degrees, and the shift increased as movement frequency increased. Those results are consistent with the manipulation of delta omega in the bimanual pendulum paradigm. (b) Increasing movement frequency induced transitions from 1:1 to non-1:1 coordination, contrary to findings in previous investigations of polyrhythmic coordination. Tactile feedback played a minimal role in stabilizing bimanual coordination in the current tasks.  相似文献   

19.
Young (n = 7) and elderly (n = 7) subjects performed bimanual coordination patterns in the transverse plane according to the in-phase or antiphase mode. Sensory information was manipulated through visual (with or without vision of the limbs) and proprioceptive input (with or without vibratory stimuli on one limb). Movement patterns with vibrations showed higher deviations from the intended relative phase than did those without vibrations. This finding suggests that the proprioceptive information induced by the vibrations and the movement interfered, leading to a disruption of the coordination patterns. In addition, as compared with the elderly, the young subjects performed more stable movements under normal circumstances but were more strongly affected by vibratory stimuli during the performance of in-phase movements. During antiphase movements, both age groups experienced a decrease of pattern stability. Furthermore, the absence or presence of visual feedback influenced the performance of the young subjects more than that of the elderly. The presence of vision led to stable in-phase movements, whereas a decrease of pattern stability was observed for antiphase movements. In general, these results demonstrate that manipulation of feedback sources affects young subjects more than elderly ones, and this can be related to a reduced sensory sensitivity as a function of aging.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号