首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
王思思  库逸轩 《心理学报》2018,50(7):727-738
以往的影像学研究表明右侧背外侧前额叶皮层(DLPFC)在视觉工作记忆中发挥重要作用, 然而缺乏因果性的证据。本研究旨在考察右侧DLPFC的激活与视觉工作记忆容量的因果关系, 并探讨这一关系受到记忆负荷的调节及其神经机制。被试接受经颅直流电刺激之后完成视觉工作记忆变化检测任务, 根据被试在虚假刺激情况下从负荷4到负荷6任务记忆容量的增量将被试分为低记忆增长潜力组(简称低潜力组)和高记忆增长潜力组(简称高潜力组), 结果发现正性电刺激右侧DLPFC相对于虚假电刺激显著提升了高潜力组被试在低记忆负荷(负荷4)下的记忆容量及其对应的提取阶段的脑电指标SPCN成分。表明右侧DLPFC在视觉工作记忆的提取阶段发挥重要的因果性作用; 正性经颅直流电刺激右侧DLPFC可使工作记忆容量高潜力被试获得更多的脑活动增益, 并导致更好的行为提升效果。  相似文献   

2.
3.
4.
5.
Many lines of evidence implicate the lateral prefrontal cortex (LPFC) in the executive control of behavior. In early studies, neuronal activity in this area was thought to retain information about forthcoming movements for a short period until they were executed. However, later studies have stressed its role in the cognitive aspects of behavioral planning, such as behavioral significance, behavioral rules and behavioral goals. The consequence of the intended action (i.e. a change in the state of the target object), rather than the intended movement, is primarily represented in the LPFC during planning. Recent studies show that the LPFC is involved in more abstract aspects of conceptual processes, such as in representing categories of multiple actions at the stage of behavioral planning.  相似文献   

6.
Experimental data indicate a role for the prefrontal cortex in mediating normal sleep physiology, dreaming and sleep-deprivation phenomena. During nonrandom-eye-movement (NREM) sleep, frontal cortical activity is characterized by the highest voltage and the slowest brain waves compared to other cortical regions. The differences between the self-awareness experienced in waking and its diminution in dreaming can be explained by deactivation of the dorsolateral prefrontal cortex during REM sleep. Here, we propose that this deactivation results from a direct inhibition of the dorsolateral prefrontal cortical neurons by acetylcholine, the release of which is enhanced during REM sleep. Sleep deprivation influences frontal executive functions in particular, which further emphasizes the sensitivity of the prefrontal cortex to sleep.  相似文献   

7.
Experimental studies in nonhuman primates and functional imaging studies in humans have underlined the critical role played by the prefrontal cortex (PFC) in working memory. However, the precise organization of the frontal lobes with respect to the different types of information operated upon is a point of controversy, and several models of functional organizations have been proposed. One model, developed by Goldman-Rakic and colleagues, postulates a modular organization of working memory based on the type of information processing (the domain specificity hypothesis). Evidence to date has focused on the encoding of the locations of visual objects by the dorsolateral PFC, whereas the ventrolateral PFC is suggested to be involved in processing the features and identity of objects. In this model, domain should refer to any sensory modality that registers information relevant to that domain—for example, there would be visual and auditory input to a spatial information processing region and a feature analysis system. In support of this model, recent studies have described pathways from the posterior and anterior auditory association cortex that target dorsolateral spatial-processing regions and ventrolateral object-processing regions, respectively. In addition, physiological recordings from the ventrolateral PFC indicate that some cells in this region are responsive to the features of complex sounds. Finally, recordings in adjacent ventrolateral prefrontal regions have shown that the features of somatosensory stimuli can be discriminated and encoded by ventrolateral prefrontal neurons. These discoveries argue that two domains, differing with respect to the type of information being processed, and not with respect to the sensory modality of the information, are specifically localized to discrete regions of the PFC and embody the domain specificity hypothesis, first proposed by Patricia Goldman-Rakic.  相似文献   

8.
We aimed to elicit emotion in patients with surgically circumscribed lesions of the prefrontal cortex (PFC) in order to elucidate the precise functional roles in emotion processing of the discrete subregions comprising the ventromedial PFC, including the medial PFC and orbitofrontal cortex (OFC). Three components of emotional reactivity were measured: subjective experience, behaviour, and physiological response. These included measures of self‐reported emotion, observer‐rated facial expression of emotion and measurements of heart rate and heart rate variability (HRV) during film viewing, and a measure of subjective emotional change since surgery. Patients with lesions to the ventromedial PFC demonstrated significant differences compared with controls in HRV during the film clips, suggesting a shift to greater dominance of sympathetic input. In contrast, patients with lesions restricted to the OFC showed significant differences in HRV suggesting reduced sympathetic input. They also showed less facial expression of emotion during positive film clips, and reported more subjective emotional change since surgery compared with controls. This human lesion study is important for refining theoretical models of emotion processing by the ventromedial PFC, which until now have primarily been based on anatomical connectivity, animal lesion, and human functional neuroimaging research. Such theories have implications for the treatment of a wide variety of emotional disorders.  相似文献   

9.
Inhibition and the right inferior frontal cortex   总被引:27,自引:0,他引:27  
It is controversial whether different cognitive functions can be mapped to discrete regions of the prefrontal cortex (PFC). The localisationist tradition has associated one cognitive function - inhibition - by turns with dorsolateral prefrontal cortex (DLPFC), inferior frontal cortex (IFC), or orbital frontal cortex (OFC). Inhibition is postulated to be a mechanism by which PFC exerts its effects on subcortical and posterior-cortical regions to implement executive control. We review evidence concerning inhibition of responses and task-sets. Whereas neuroimaging implicates diverse PFC foci, advances in human lesion-mapping support the functional localization of such inhibition to right IFC alone. Future research should investigate the generality of this proposed inhibitory function to other task domains, and its interaction within a wider network.  相似文献   

10.
Rapid advances have recently been made in understanding how value-based decision-making processes are implemented in the brain. We integrate neuroeconomic and computational approaches with evidence on the neural correlates of value and experienced pleasure to describe how systems for valuation and decision-making are organized in the prefrontal cortex of humans and other primates. We show that the orbitofrontal and ventromedial prefrontal (VMPFC) cortices compute expected value, reward outcome and experienced pleasure for different stimuli on a common value scale. Attractor networks in VMPFC area 10 then implement categorical decision processes that transform value signals into a choice between the values, thereby guiding action. This synthesis of findings across fields provides a unifying perspective for the study of decision-making processes in the brain.  相似文献   

11.
Neuroscience research has identified the involvement of the dorsolateral prefrontal cortex (DLPFC) in cognitive control. Questions remain, however, about its lateralization correlates during Stroop task performance, an experimental cornerstone on which a large amount of cognitive control research is based. After reviewing the literature, we find that three Stroop variants have been used in an attempt to uncover different aspects of cognitive control related to DLPFC involvement. In sum, rapid and sequential up-regulation of the attentional set seems to be related to the left DLPFC. These attentional adjustments are based on participants’ expectancies regarding the conflicting nature of the upcoming trial, and not on the conflict itself. In contrast, the right DLPFC is associated with an overall up-regulation of the attentional set when attentional conflict is experienced.  相似文献   

12.
The human self model suggests that the construct of self involves functions such as agency, body-centered spatial perspectivity, and long-term unity. Vogeley, Kurthen, Falkai, and Maieret (1999) suggest that agency is subserved by the prefrontal cortex and other association areas of the cortex, spatial perspectivity by the prefrontal cortex and the parietal lobes, and long-term unity by the prefrontal cortex and the temporal lobes and that all of these functions are impaired in schizophrenia. Exploring the connections between the prefrontal cortex and the construct of self, the present article extends the application of the self model to autism. It suggests that in contrast to schizophrenia, agency and spatial perspectivity are probably preserved in autism, but that, similarly to schizophrenia, long-term unity is probably impaired. This hypothesis is compatible with a model of neuropsychological dysfunction in autism in a neural network including parts of the prefrontal cortex, the temporal lobes, and the cerebellum.  相似文献   

13.
The mid-ventrolateral prefrontal cortex and active mnemonic retrieval   总被引:8,自引:0,他引:8  
The role of the mid-ventrolateral prefrontal cortex in memory retrieval is examined and compared with the role of the mid-dorsolateral prefrontal cortex in the monitoring of information in memory. It has been argued that the mid-ventrolateral prefrontal cortex (areas 47/12 and 45) is involved in the active retrieval of information from posterior cortical association areas. Active retrieval is required when stimuli in memory do not bear stable relations to each other and therefore retrieval cannot be automatically driven by strong, stable, and unambiguous stimulus or context relations. Data from functional activation studies with normal human subjects are presented that have demonstrated specific changes in activity within the mid-ventrolateral region of the frontal cortex in relation to the active retrieval of information from memory. By contrast, increases in activity in the mid-dorsolateral region of the frontal cortex occur when the performance of the tasks requires monitoring of information in memory.  相似文献   

14.
Background/ObjectiveMost studies investigating the neural correlates of threat learning were carried out using an explicit Pavlovian conditioning paradigm where declarative knowledge on contingencies between conditioned (CS) and unconditioned stimuli (US) is acquired. The current study aimed at understanding the neural correlates of threat conditioning when contingency awareness is limited or even absent.MethodWe conducted an fMRI report of threat learning in an implicit associative learning paradigm called multi-CS conditioning, in which a number of faces were associated with aversive screams (US) such that participants could not report contingencies between the faces and the screams.ResultsThe univariate results showed support for the recruitment of threat-related regions including the dorsolateral prefrontal cortex (dlPFC) and the cerebellum during acquisition. Further analyses by the multivariate representational similarity technique identified learning-dependent changes in the bilateral dlPFC.ConclusionOur findings support the involvement of the dlPFC and the cerebellum in threat conditioning that occurs with highly limited or even absent contingency awareness.  相似文献   

15.
The neuropsychological bases of cognitive, social, and moral development are minimally understood, with a seemingly wide chasm between developmental theories and brain maturation models. As one approach to bridging ideas in these areas, we review 10 cases of early prefrontal cortex damage from the clinical literature, highlighting overall clinical profiles and real life developmental outcomes. Based on these cases, there is preliminary evidence to support distinctive developmental differences after: (1) dorsolateral, (2) mesial, and (3) orbital-polar prefrontal lesions, for more profound impairments after bilateral damage, and possibly for recovery differences after very early vs. later childhood lesion onset. Further case and group studies are needed to confirm reliable effects of specific lesion locations, the influence of age of lesion onset, and related experiential and treatment variables in determining adult outcomes. Rather than a single underlying deficit associated with early prefrontal cortex damage, we interpret the findings to suggest that it is the altered integration and interplay of cognitive, emotional, self-regulatory, and executive/metacognitive deficits that contribute to diverse developmental frontal lobe syndromes. The findings support the fundamental importance of prefrontal cortex maturation in protracted cognitive, social-emotional, and moral development.  相似文献   

16.
The dorsolateral prefrontal cortex (DLPFC) plays a crucial role in working memory. Notably, persistent activity in the DLPFC is often observed during the retention interval of delayed response tasks. The code carried by the persistent activity remains unclear, however. We critically evaluate how well recent findings from functional magnetic resonance imaging studies are compatible with current models of the role of the DLFPC in working memory. These new findings suggest that the DLPFC aids in the maintenance of information by directing attention to internal representations of sensory stimuli and motor plans that are stored in more posterior regions.  相似文献   

17.
张丹丹  刘珍莉  陈钰  买晓琴 《心理学报》2019,51(2):207-2015
已有的经颅直流电刺激(transcranial direct current stimulation, tDCS)研究证明, 右腹外侧前额叶(right ventrolateral prefrontal cortex, RVLPFC)是社会情绪调节的重要脑区, 激活RVLPFC可显著降低人们对社会性负性情绪体验的强度。社会功能受损是抑郁症患者或抑郁倾向人群的重要特征之一。该群体对社会排斥的敏感性高, 且对负性社会情绪体验的情绪调节能力降低。在本研究中, 我们采用外显的情绪调节任务, 研究了高、低抑郁水平的两组成年人被试在RVLPFC接受阳性tDCS后其情绪调节能力的改变。结果表明, 虽然采用tDCS激活RVLPFC可帮助被试通过情绪调节(认知重评)减弱负性情绪体验, 但高抑郁水平被试的负性情绪强度下降程度明显小于低抑郁水平被试。另外本文还发现, 与源于个人的负性情绪相比, tDCS效应对源于社会的负性情绪(即社会排斥)更强。本研究是采用电或磁刺激提高抑郁人群社会情绪调节能力的首次尝试。实验结果表明, 高抑郁水平成年人的RVLPFC仅通过单次、短时间(34 min)的tDCS激活, 其情绪调节能力并未得到显著提升。这提示对抑郁倾向群体或抑郁症患者的干预或治疗需要多次施加tDCS。  相似文献   

18.
In a series of event-related functional magnetic resonance studies, we consistently found activation in anterior prefrontal cortex related to visual dimension changes in singleton search tasks. I review these data and discuss possible contributions of anterior prefrontal cortex to attention control in visual search. It is proposed that anterior prefrontal cortex may detect task-relevant stimulus changes when the target is ambiguously defined. This process may occur in the absence of awareness and may support visual dimension weighting by inhibition of the old relevant dimension in favor of the new dimension.  相似文献   

19.
The prefrontal cortex plays a crucial role in cognitive processes, both during anticipatory and reactive modes of cognitive control. Transcranial Direct Current Stimulation (tDCS) can modulate these cognitive resources. However, there is a lack of research exploring the impact of tDCS on emotional material processing in the prefrontal cortex, particularly in regard to proactive and reactive modes of cognitive control. In this study, 35 healthy volunteers underwent both real and sham tDCS applied to the right prefrontal cortex in a counterbalanced order, and then completed the Cued Emotion Control Task (CECT). Pupil dilation, a measure of cognitive resource allocation, and behavioral outcomes, such as reaction time and accuracy, were collected. The results indicate that, as compared to sham stimulation, active right-sided tDCS reduced performance and resource allocation in both proactive and reactive modes of cognitive control. These findings highlight the importance of further research on the effects of tDCS applied to the right prefrontal cortex on cognitive engagement, particularly for clinical trials utilizing the present electrode montage in combination with cognitive interventions.  相似文献   

20.
大量研究表明, 前额叶的结构和功能更容易受年老化影响; 然而, 近年来的研究发现, 前额叶的结构和功能在老年阶段具有一定的可塑性。对老年人进行认知训练, 能够延缓前额叶皮层厚度的萎缩, 提高白质完整性, 改善神经网络的功能连接和分化, 并可能通过调节多巴胺系统的活动改变前额叶皮质和皮质下结构的功能激活模式。有氧锻炼能够改善心脑血管功能, 保护和促进神经元的存活和生长, 引起前额叶灰质、白质体积的增加及功能激活的变化。认知训练与有氧锻炼等相结合的整合性训练不仅引起前额叶及相关认知功能的改变, 而且具有更好的生态学效度, 使老年人日常认知能力和生活质量得到提高。未来研究应采用多种技术手段, 从多个层面理解老年阶段前额叶的可塑性及相关机制; 加强对与前额叶关系密切的多种认知功能可塑性神经机制的研究; 并重视与整合性训练有关的前额叶可塑性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号